Reference : Deep generative models for fast shower simulation in ATLAS
E-prints/Working papers : Already available on another site
Physical, chemical, mathematical & earth Sciences : Physics
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/226551
Deep generative models for fast shower simulation in ATLAS
English
The ATLAS collaboration []
Louppe, Gilles mailto [Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data >]
12-Jul-2018
No
CERN
Researchers
http://hdl.handle.net/2268/226551
Joint work between Gadatsch, Stefan (Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve) ; Salamani, Dalila (Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve) ; Cranmer, Kyle (Department of Physics, New York University) ; Louppe, Gilles Claude (Department of Physics, New York University) ; Golling, Tobias (Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve) ; Rousseau, David (LAL, Univ. Paris-Sud, IN2P3/CNRS, Universite Paris-Saclay) ; Stewart, Graeme (European Laboratory for Particle Physics, CERN) ; Ghosh, Aishik (LAL, Univ. Paris-Sud, IN2P3/CNRS, Universite Paris-Saclay) for the ATLAS collaboration.
https://cds.cern.ch/record/2630433

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
ATL-SOFT-PUB-2018-001.pdfAuthor preprint28.65 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.