Article (Scientific journals)
Machine Learning in High Energy Physics Community White Paper
Albertsson, Kim; Altoe, Piero; Anderson, Dustin et al.
2018In Journal of Physics. Conference Series, 1085
Peer Reviewed verified by ORBi
 

Files


Full Text
1807.02876.pdf
Publisher postprint (580.62 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Physics - Computational Physics; Computer Science - Machine Learning; High Energy Physics - Experiment; Statistics - Machine Learning
Abstract :
[en] Machine learning is an important research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.
Disciplines :
Physics
Author, co-author :
Albertsson, Kim
Altoe, Piero
Anderson, Dustin
Andrews, Michael
Araque Espinosa, Juan Pedro
Aurisano, Adam
Basara, Laurent
Bevan, Adrian
Bhimji, Wahid
Bonacorsi, Daniele
Calafiura, Paolo
Campanelli, Mario
Capps, Louis
Carminati, Federico
Carrazza, Stefano
Childers, Taylor
Coniavitis, Elias
Cranmer, Kyle
David, Claire
Davis, Douglas
Duarte, Javier
Erdmann, Martin
Eschle, Jonas
Farbin, Amir
Feickert, Matthew
Filipe Castro, Nuno
Fitzpatrick, Conor
Floris, Michele
Forti, Alessandra
Garra-Tico, Jordi
Gemmler, Jochen
Girone, Maria
Glaysher, Paul
Gleyzer, Sergei
Gligorov, Vladimir
Golling, Tobias
Graw, Jonas
Gray, Lindsey
Greenwood, Dick
Hacker, Thomas
Harvey, John
Hegner, Benedikt
Heinrich, Lukas
Hooberman, Ben
Junggeburth, Johannes
Kagan, Michael
Kane, Meghan
Kanishchev, Konstantin
Karpiński, Przemysław
Kassabov, Zahari
Kaul, Gaurav
Kcira, Dorian
Keck, Thomas
Klimentov, Alexei
Kowalkowski, Jim
Kreczko, Luke
Kurepin, Alexander
Kutschke, Rob
Kuznetsov, Valentin
Köhler, Nicolas
Lakomov, Igor
Lannon, Kevin
Lassnig, Mario
Limosani, Antonio
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Mangu, Aashrita
Mato, Pere
Meenakshi, Narain
Meinhard, Helge
Menasce, Dario
Moneta, Lorenzo
Moortgat, Seth
Neubauer, Mark
Newman, Harvey
Pabst, Hans
Paganini, Michela
Paulini, Manfred
Perdue, Gabriel
Perez, Uzziel
Picazio, Attilio
Pivarski, Jim
Prosper, Harrison
Psihas, Fernanda
Radovic, Alexander
Reece, Ryan
Rinkevicius, Aurelius
Rodrigues, Eduardo
Rorie, Jamal
Rousseau, David
Sauers, Aaron
Schramm, Steven
Schwartzman, Ariel
Severini, Horst
Seyfert, Paul
Siroky, Filip
Skazytkin, Konstantin
Sokoloff, Mike
Stewart, Graeme
Stienen, Bob
Stockdale, Ian
Strong, Giles
Thais, Savannah
Tomko, Karen
Upfal, Eli
Usai, Emanuele
Ustyuzhanin, Andrey
Vala, Martin
Vallecorsa, Sofia
Verzetti, Mauro
Vilasís-Cardona, Xavier
Vlimant, Jean-Roch
Vukotic, Ilija
Wang, Sean-Jiun
Watts, Gordon
Williams, Michael
Wu, Wenjing
Wunsch, Stefan
Zapata, Omar
More authors (108 more) Less
Language :
English
Title :
Machine Learning in High Energy Physics Community White Paper
Publication date :
08 July 2018
Journal title :
Journal of Physics. Conference Series
ISSN :
1742-6588
eISSN :
1742-6596
Publisher :
Institute of Physics, United Kingdom
Volume :
1085
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Editors: Sergei Gleyzer, Paul Seyfert and Steven Schramm
Available on ORBi :
since 10 July 2018

Statistics


Number of views
91 (4 by ULiège)
Number of downloads
1661 (0 by ULiège)

Scopus citations®
 
140
Scopus citations®
without self-citations
116
OpenCitations
 
69
OpenAlex citations
 
172

Bibliography


Similar publications



Contact ORBi