Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
New approaches using machine learning for fast shower simulation in ATLAS
Hasib, Ahmed
;
Schaarschmidt, Jana
;
Gadatsch, Stefan
et al.
2018
•
ICHEP 2018 Seoul
Permalink
https://hdl.handle.net/2268/226462
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
No document available.
Annexes
ATL-SOFT-SLIDE-2018-464.pdf
Publisher postprint (21.89 MB)
Download
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Disciplines :
Physics
Author, co-author :
Hasib, Ahmed
Schaarschmidt, Jana
Gadatsch, Stefan
Golling, Tobias
Salamani, Dalila
Ghosh, Aishik
Rousseau, David
Cranmer, Kyle
Stewart, Graeme
Louppe, Gilles
;
Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
New approaches using machine learning for fast shower simulation in ATLAS
Publication date :
05 July 2018
Event name :
ICHEP 2018 Seoul
Event place :
Seoul, South Korea
Event date :
July 3-11, 2018
Audience :
International
Additional URL :
https://cds.cern.ch/record/2628624
Available on ORBi :
since 09 July 2018
Statistics
Number of views
56 (1 by ULiège)
Number of downloads
35 (1 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi