Aldor, I. S., Krawitz, D. C., Forrest, W., Chen, C., Nishihara, J. C., Joly, J. C., et al. (2005) Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 71: 1717–1728.
Baert, J., Kinet, R., Brognaux, A., Delepierre, A., Telek, S., Sorensen, S. J., et al. (2015) Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law. Biotechnol J 10: 1316–1325.
Binder, D., Drepper, T., Jaeger, K.-E., Delvigne, F., Wiechert, W., Kohlheyer, D., et al. (2017) Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab Eng 42: 145–156.
Boer, V. M., de Winde, J. H., Pronk, J. T., and Piper, M. D. W. (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278: 3265–3274.
Broger, T., Odermatt, R. P., Huber, P., and Sonnleitner, B. (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154: 240–247.
Brognaux, A., Han, S., Sorensen, S. J., Lebeau, F., Thonart, P., and Delvigne, F. (2013) A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microb Cell Factories 12: 100.
Buchholz, J., Graf, M., Freund, A., Busche, T., Kalinowski, J., Blombach, B., et al. (2014) CO(2)/HCO(3)(-) perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98: 8563–8572.
Delvigne, F., Zune, Q., Lara, A. R., Al-Soud, W., and Sorensen, S. J. (2014) Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 32: 608–616.
Dusny, C., Fritzsch, F. S. O., Frick, O., and Schmid, A. (2012) Isolated microbial single cells and resulting micropopulations grow faster in controlled environments. Appl Environ Microbiol 78: 7132–7136.
El Massaoudi, M., Spelthahn, J., Drysch, A., de Graaf, A., and Takors, R. (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: I-sensor reactor system. Metab Eng 5: 86–95.
Enfors, S. O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jurgen, B., et al. (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85: 175–185.
Fu, Z., Verderame, T. D., Leighton, J. M., Sampey, B. P., Appelbaum, E. R., Patel, P. S., et al. (2014) Exometabolome analysis reveals hypoxia at the up-scaling of a Saccharomyces cerevisiae high-cell density fed-batch biopharmaceutical process. Microb Cell Factories 13: 32.
Gao, Y., Ray, S., Dai, S., Ivanov, A. R., Abu-Absi, N. R., Lewis, A. M., et al. (2016) Combined metabolomics and proteomics reveals hypoxia as a cause of lower productivity on scale-up to a 5000-liter CHO bioprocess. Biotechnol J 11: 1190–1200.
George, S., Larsson, G., and Enfors, S. O. (1993) A scale-down two-compartment reactor with controlled substrate oscillations: metabolic response of Saccharomyces cerevisiae. Bioprocess Biosyst Eng 9: 249–257.
Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361.
Grunberger, A., Paczia, N., Probst, C., Schendzielorz, G., Eggeling, L., Noack, S., et al. (2012) A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12: 2060–2068.
Grunberger, A., Wiechert, W., and Kohlheyer, D. (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29: 15–23.
Haringa, C., Tang, W., Deshmukh, A. T., Xia, J., Reuss, M., Heijnen, J. J., et al. (2016) Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines. Eng Life Sci 16: 652–663.
Haringa, C., Deshmukh, A. T., Mudde, R. F., and Noorman, H. (2017) Euler-Lagrange analysis towards representative down-scaling of a 22 m3 aerobic S. cerevisiae fermentation. Chem Eng Sci (in press). https://doi.org/10.1016/j.ces.2017.01.014
Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M., and Kreft, J.-U. (2016) Advancing microbial sciences by individual-based modelling. Nat Rev Microbiol 14: 461–471.
Hilfinger, A., and Paulsson, J. (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc Natl Acad Sci USA 108: 12167–12172.
de Jonge, L. P., Buijs, N. A. A., ten Pierick, A., Deshmukh, A., Zhao, Z., Kiel, J. A. K. W., et al. (2011) Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol J 6: 944–958.
de Jonge, L., Buijs, N. A. A., Heijnen, J. J., van Gulik, W. M., Abate, A., and Wahl, S. A. (2014) Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic (13)C labeling. Biotechnol J 9: 372–385.
Junne, S., Klingner, A., Kabisch, J., Schweder, T., and Neubauer, P. (2011) A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6: 1009–1017.
Kass, F., Hariskos, I., Michel, A., Brandt, H.-J., Spann, R., Junne, S., et al. (2014) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosyst Eng 37: 1151–1162.
Kuschel, M., Siebler, F., and Takors, R. (2017) Trajectories to predict the formation of population heterogeneity in large-scale bioreactors. Bioengineering 4: 1–13.
Lapin, A., Müller, D., and Reuss, M. (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler-Lagrange methods: traveling along the lifelines of single cells. Ind Eng Chem Res 43: 4647–4656.
Lara, A. R., Leal, L., Flores, N., Gosset, G., Bolivar, F., and Ramirez, O. T. (2005) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng 93: 372–385.
Lara, A. R., Tyamaz-Nikerel, H., Mashego, M. R., van Gulik, W. M., and Heijnen, J. J. (2009) Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses. Biotechnol Bioeng 104: 1153–1161.
Larsson, G., Tornkvist, M., Stahl-Wernersson, E., Tragardh, C., Noorman, H., and Enfors, S. O. (1996) Substrate gradients in fed-batch bioreactors: origin and consequences. Bioprocess Eng 14: 281–289.
Lemoine, A., Maya Martiotanez-Iturralde, N., Spann, R., Neubauer, P., and Junne, S. (2015) Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two- and a novel three-compartment scale-down bioreactor. Biotechnol Bioeng 112: 1220–1231.
Lemoine, A., Delvigne, F., Bockisch, A., Neubauer, P., and Junne, S. (2017) Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions. J Biotechnol 251: 84–93.
Limberg, M. H., Schulte, J., Aryani, T., Mahr, R., Baumgart, M., Bott, M., et al. (2017) Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng 114: 560–575.
Loffler, M., Simen, J. D., Jager, G., Schaferhoff, K., Freund, A., and Takors, R. (2016) Engineering E. coli for large-scale production – strategies considering ATP expenses and transcriptional responses. Metab Eng 38: 73–85.
Loffler, M., Simen, J. D., Muller, J., Jager, G., Laghrami, S., Schaferhoff, K., et al. (2017) Switching between nitrogen and glucose limitation: unraveling transcriptional dynamics in Escherichia coli. J Biotechnol [Epub ahead of print] https://doi.org/10.1016/j.jbiotec.2017.04.011.
Martins, B. M., and Locke, J. C. (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 24: 104–112.
Michalowski, A., Siemann-Herzberg, M., and Takors, R. (2017) Escherichia coli HGT: engineered for high glucose throughput even under slowly growing or resting conditions. Metab Eng 40: 93–103.
Neubauer, P., Häggström, L., and Enfors, S. O. (1995) Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations. Biotechnol Bioeng 47: 139–146.
Niess, A., Löffler, M., Simen, J. D., and Takors, R. (2017) Repetitive short-term stimuli imposed in poor mixing zones induce long-term adaptation of E. coli cultures in large-scale bioreactors: experimental evidence and mathematical model. Front Microbiol 8: 1–9.
Noorman, H., and Heijnen, J. J. (2017) Biochemical engineering's grand adventure. Chem Eng Sci (in press). https://doi.org/10.1016/j.ces.2016.12.065
Oosterhuis, N. M. G. G. N. M. (1983) Scale-down aspects of the gluconic acid fermentation. Biotechnol Lett 5: 141–146.
Oosterhuis, N. M. G., and Kossen, N. W. (1983) Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng 26: 546–550.
Oosterhuis, N. M. G., Kossen, N. W., Olivier, A. P. C., and Shenk, E. S. (1985) Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol Bioeng 27: 711–720.
Schaefer, U., Boos, W., Takors, R., and Weuster-Botz, D. (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270: 88–96.
Schilling, B. M., Pfefferle, W., Bachmann, B., Leuchtenberger, W., and Deckwer, W. D. (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process. Biotechnol Bioeng 64: 599–606.
Simen, J. D., Loffler, M., Jager, G., Schaferhoff, K., Freund, A., Matthes, J., et al. (2017) Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb Biotechnol 10: 858–872.
Sweere, A. P., and Mesters, J. R. (1988) Experimental simulation of oxygen profiles and their influence on Baker's yeast production. Part I: one-fermentor system. Biotechnol Bioeng 31: 567–578.
Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde, J. H., Daran, J.-M., et al. (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280: 437–447.
Tang, W., Deshmukh, A. T., Haringa, C., Wang, G., van Gulik, W., van Winden, W., et al. (2017) A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum. Biotechnol Bioeng 114: 1733–1743.
Theobald, U., Mailinger, W., Reuss, M., and Rizzi, M. (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214: 31–37.
Visser, D., van Zuylen, G. A., van Dam, J. C., Oudshoorn, A., Eman, M. R., Ras, C., et al. (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79: 674–681.
Weuster-Botz, D. (1997) Sampling tube device for monitoring intracellular metabolite dynamics. Anal Biochem 246: 225–233.