Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny
Schroyen, Martine ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Li, Bing
Wavreille, José ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Agronomie, Bio-ingénierie et Chimie (AgroBioChem)
Bindelle, Jérôme ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Everaert, Nadia ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Language :
English
Title :
Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny
Publication date :
2018
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Lallès JP, Boudry G, Favier C, Le Floc’h N, Luron I, Montagne L, et al. Gut function and dysfunction in young pigs: physiology. Anim Res. 2004; 53(4):301–316.
Montagne L, Boudry G, Favier C, Le Huërou-Luron I, Lallès J-P, Sève B. Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br J Nutr. 2007; 97(1):45–57. https://doi.org/10.1017/S000711450720580X PMID: 17217559
Hu CH, Xiao K, Luan ZS, Song J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science. 2014; 91(3):1094–1101.
Le Huërou-Luron I. Production and gene expression of brush border disaccharidases and peptidases during development in pigs and calves. In: Zabielski R, Gregory PC, Westrom B, editors. Biology of the Intestine in Growing Animals. 1st ed. Elsevier; 2003. p. 491–513.
Gresse R, Chaucheyras-durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology [Internet]. Elsevier Ltd; 2017; 25(10):851–873. https://doi.org/10.1016/j.tim.2017.05.004 PMID: 28602521
Lallès JP, Bosi P, Janczyk P, Koopmans SJ, Torrallardona D. Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review*. Animal. 2009; 3(12):1625–1643. https://doi.org/10.1017/S175173110900398X PMID: 22443548
Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. Journal of immunology (Baltimore, Md: 1950) [Internet]. 2015; 194(9):4081–4087.
Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition research reviews. 2010; 23(2):366–384. https://doi.org/10.1017/S0954422410000247 PMID: 20937167
Starke IC, Pieper R, Neumann K, Zentek J, Vahjen W. Individual responses of mother sows to a probi-otic Enterococcus faecium strain lead to different microbiota composition in their offspring. Beneficial Microbes. 2013; 4(4):345–356. https://doi.org/10.3920/BM2013.0021 PMID: 24311318
Paßlack N, Vahjen W, Zentek J. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet Res. 2015; 11(51).
O’Doherty JV, Bouwhuis MA, Sweeney T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. Animal production science. 2017; 57(12):2376–2385.
Krogh U, Bruun TS, Poulsen J, Theil PK. Impact of fat source and dietary fi bers on feed intake, plasma metabolites, litter gain and the yield and composition of milk in sows. Animal. 2017; 11(6):975–983. https://doi.org/10.1017/S1751731116002585 PMID: 27903321
Loisel F, Farmer C, Ramaekers P, Quesnel H. Effects of high fiber intake during late pregnancy on sow physiology, colostrum production, and piglet performance 1. Journal of Animal Science. 2013; 91 (11):5269–5279. https://doi.org/10.2527/jas.2013-6526 PMID: 23989876
Le Bourgot C, Ferret-Bernard S, Le Normand L, Savary G, Menendez-Aparicio E, Blat S, et al. Maternal Short-Chain Fructooligosaccharide Supplementation Influences Intestinal Immune System Maturation in Piglets. PLoS ONE. 2014; 9(9):e107508. https://doi.org/10.1371/journal.pone.0107508 PMID: 25238157
Schokker D, Zhang J, Zhang LL, Vastenhouw S A., Heilig HGHJ, Smidt H, et al. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets. PLoS ONE. 2014; 9(6):e100040. https://doi.org/10.1371/journal.pone.0100040 PMID: 24941112
Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology. 2009; 33(3):384–393. https://doi.org/10.1016/j.dci.2008.07.007 PMID: 18761034
Theil PK, Nielsen MO, Sørensen MT, Lauridsen C. Lactation, milk and suckling chapter 17. In: Bach Knudsen KE, Kjeldsen MO, Sorensen MT, Poulsen HD, Jensen BB, editors. Nutritional Physiology of Pigs—with emphasis on Danish Production Conditions. 2012.
Haenen D, Zhang J, Souza C, Bosch G, Van Der Meer IM, Van Arkel J, et al. A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine. The Journal of nutrition. 2013; 143(3):274–283. https://doi.org/10.3945/jn.112.169672 PMID: 23325922
Giuberti G, Gallo A, Moschini M, Masoero F. New insight into the role of resistant starch in pig nutrition. Animal Feed Science and Technology [Internet]. Elsevier B.V.; 2015; 201:1–13.
Yan H, Lu H, Almeida V V, Ward MG, Adeola O, Nakatsu CH, et al. Effects of dietary resistant starch content on metabolic status, milk composition, and microbial profiling in lactating sows and on offspring performance. Journal of Animal Physiology and Animal Nutrition. 2017; 101(1):190–200. https://doi.org/10.1111/jpn.12440 PMID: 26848026
Gerrits WJJ, Bosch MW, van den Borne JJGC. Quantifying Resistant Starch Using Novel, In Vivo Methodology and the Energetic Utilization of Fermented Starch in Pigs. The Journal of nutrition. 2012; 142 (2):238–244. https://doi.org/10.3945/jn.111.147496 PMID: 22223577
Bindelle J, Leterme P, Buldgen A. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnology Agronomy Social Environment. 2008; 12(1):69–80.
Pieper R, Vahjen W, Zentek J. Dietary fibre and crude protein: impact on gastrointestinal microbial fermentation characteristics and host response. Animal production science. 2015; 55(12):1367–1375.
Giuberti G, Gallo A, Moschini M, Masoero F. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. 2013;1446–1453.
Themeier H, Hollmann J, Neese U, Lindhauer MG. Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. 2005; 61:72–79.
Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non-starch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science [Internet]. Elsevier; 1991; 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 PMID: 1660498
Leblois J, Massart S, Li B, Wavreille J, Bindelle J, Everaert N. Modulation of piglets ‘microbiota: differential effects by a high wheat bran maternal diet during gestation and lactation. Scientific Reports. 2017; 7:7426. https://doi.org/10.1038/s41598-017-07228-2 PMID: 28784986
Dozois CM, Oswald E, Gautier N, Serthelon J, Fairbrother JM, Oswald IP. A reverse transcription-polymerase chain reaction method to analyze porcine cytokine gene expression. Vet Immunol Immuno-pathol. 1997; 58:287–300. PMID: 9436272
Chatelais L, Jamin A, Le Guen CG, Lallès JP, le Huërou-Luron I, Boudry G. The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model. PLoS ONE. 2011; 6(5):e19594. https://doi.org/10.1371/journal.pone.0019594 PMID: 21573022
Meissonnier GM, Pinton P, Laf J, Cossalter A, Yun Y, Wild CP, et al. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol Appl Pharmacol. 2008; 231(2):142–149. https://doi.org/10.1016/j.taap.2008.04.004 PMID: 18501398
Vigors S, Doherty JVO, Kelly AK, Shea CJO. The Effect of Divergence in Feed Efficiency on the Intestinal Microbiota and the Intestinal Immune Response in both Unchallenged and Lipopolysaccharide Challenged Ileal and Colonic Explants. 2016;1–16.
Meurens F, Berri M, Auray G, Melo S, Levast B, Payant IV, et al. Original article Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops. Veterinary Research. 2009; 40(1):1–15.
Royaee AR, Husmann RJ, Dawson HD, Calzada-nova G, Schnitzlein WM, Zuckermann FA, et al. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Veterinary Immunology and Immunopathology. 2004; 102(3):199–216. https://doi.org/10.1016/j.vetimm.2004.09.018 PMID: 15507306
Alassane-kpembi I, Gerez JR, Cossalter A, Neves M, Laffitte J, Naylies C, et al. Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways. Scientific Reports. 2017; 7:7530. https://doi.org/10.1038/s41598-017-07155-2 PMID: 28790326
Gourbeyre P, Berri M, Lippi Y, Meurens F, Vincent-Naulleau S, Laffite J, et al. Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt / villus axis. Physiological Reports. 2015; 3(2):e12225. https://doi.org/10.14814/phy2.12225 PMID: 25677543
Feng Z, Li T, Wu C, Tao L, Blachier F, Yin Y. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs on the proximal and distal intestinal health in growing pigs. Applied Physiology Nutrition and Metabolism. 2015; 40(4):353–363.
Chen H, Mao X, He J, Yu B, Huang Z, Yu J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. BrJNutr. 2013; 110(10):1837–1848.
Farmer C, Fisette K, Robert S, Quesnel H, Laforest JP. Use of recorded nursing grunts during lactation in two breeds of sows. II. Effects on sow performance and mammary development. Canadian Journal of Animal Science. 2004; 84(4):581–587.
Hurley WL. Composition of sow colostrum and milk. In: Farmer C, editor. The gestating and lactating sow. Wageningen Academic Publisher; 2015. p. 193–230.
Tao N, Ochonicky KL, German JB, Donovan SM, Lebrilla CB. Structural Determination and Daily Variations of Porcine Milk Oligosaccharides. Journal of Agricultural and Food Chemistry. 2010; 58:4653–9. https://doi.org/10.1021/jf100398u PMID: 20369835
Maga EA, Desai PT, Weimer BC, Dao N, Kültz D, Murray JD. Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal. Applied and Environmental Microbiology. 2012; 78(17):6153–6160. https://doi.org/10.1128/AEM.00956-12 PMID: 22752159
Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. The Journal of physiology. 2009; 587(17):4153–4158.
Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects. PLoS ONE. 2010; 5(11): e15046. https://doi.org/10.1371/journal.pone.0015046 PMID: 21151493
Sun Y, Zhou L, Fang L, Su Y, Zhu W. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet. Frontiers in microbiology. 2015; 6:1–10.
Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL / 6J mice. Journal of applied physiology. 2015; 118(8):1059–1066. https://doi.org/10.1152/japplphysiol.01077.2014 PMID: 25678701
Bird AR, Vuaran M, Brown I, Topping DL. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. British Journal of Nutrition. 2007; 97(01):134–144.
Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environmental Microbiology. 2016; 18(5):1566–1577. https://doi.org/10.1111/1462-2920.13272 PMID: 26940746
Leonard SG, Sweeney T, Bahar B, O’Doherty J V. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. Journal of Animal Science. 2012; 90(2):505–514. https://doi.org/10.2527/jas.2010-3243 PMID: 21948611
Everaert N, Van Cruchten S, Weström B, Bailey M, Van Ginneken C, Thymann T, et al. A review on early gut maturation and colonization in pigs, including biological and dietary factors a ff ecting gut homeostasis. Anim Feed Sci Technol. Elsevier; 2017; 233:89–103.