VANHAUDENHUYSE, Audrey ✱; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Centre interdisciplinaire d'algologie
Sanders, R. D.; Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States, Wellcome Department of Imaging Neuroscience, Department of Anaesthesia, Surgical Outcomes Research Centre, University College London Hospital, London, United Kingdom
Sleigh, J.; Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
Bruno, Marie-Aurélie ; GIGA-Consciousness, Coma Science Group, Pain and Hypnosis, Anesthesia and Intensive Care Laboratories, GIGA Research, University, CHU University Hospital of Liège, Liège, Belgium
Demertzi, Athina ; Université de Liège - ULiège > Centre de recherches du cyclotron
Bahri, Mohamed Ali ; Université de Liège - ULiège > Centre de recherches du cyclotron
JAQUET, Océane ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Sanfilippo, Julien ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Baquero Duarte, Katherine Andrea ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie du système nerveux
Boly, Mélanie
Brichant, Jean-François ; Université de Liège - ULiège > Département des sciences cliniques > Anesthésie et réanimation
Laureys, Steven ✱; Université de Liège - ULiège > GIGA : Coma Group
Bonhomme, Vincent ✱; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-94
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology 2015; 123: 937-60
Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The a2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36
Sanders RD, Maze M. Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway. Can J Anaesth 2011; 58: 149-56
Zecharia AY, Franks NP. General anesthesia and ascending arousal pathways. Anesthesiology 2009; 111: 695-6
Gomez F, Phillips C, Soddu A, et al. Changes in effective connectivity by propofol sedation. PLoS One 2013; 8: e71370
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010; 363: 2638-50
Djaiani G, Silverton N, Fedorko L, et al. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology 2016; 124: 362-8
Su X, Meng ZT, Wu XH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 2016; 388: 1893-902
Ni J, Wei J, Yao Y, Jiang X, Luo L, Luo D. Effect of dexmedetomidine on preventing postoperative agitation in children: a meta-analysis. PLoS One 2015; 10: e0128450
Turunen H, Jakob SM, Ruokonen E, et al. Dexmedetomidine versus standard care sedation with propofol or midazolam in intensive care: an economic evaluation. Crit Care 2015; 19: 67
Guldenmund P, Vanhaudenhuyse A, Boly M, Laureys S, Soddu A. A default mode of brain function in altered states of consciousness. Arch Ital Biol 2012; 150: 107-21
Boveroux P, Vanhaudenhuyse A, BrunoMA, et al. Breakdownof within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010; 113: 1038-53
Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci USA 2009; 106: 11376-81
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133: 161-71
Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011; 23: 570-8
Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012; 3: 295
Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011; 57: 198-205
Guldenmund P, Demertzi A, Boveroux P, et al. Thalamus, brainstem and salience network connectivity changes during mild propofol sedation and unconsciousness. Brain Connect 2013; 3: 273-85
Boly M, Perlbarg V, Marrelec G, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA 2012; 109: 5856-61
Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 41-8
Dyck JB, Maze M, Haack C, Azarnoff DL, Vuorilehto L, Shafer SL. Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology 1993; 78: 821-8
Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006; 103: 13848-53
Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 2349-56
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003; 100: 253-8
Reed SJ, Plourde G. Attenuation of high-frequency (50-200 Hz) thalamocortical EEG rhythms by propofol in rats is more pronounced for the thalamus than for the cortex. PLoS One 2015; 10: e0123287
Akeju O, LoggiaML, Catana C, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidineinduced unconsciousness. Elife 2014; 3: e04499
Abulafia R, Zalkind V, Devor M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 2009; 29: 7053-64
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010; 214: 655-67
Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012; 32: 4935-43
Maquet P, Peters J, Aerts J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996; 383: 163-6
Soddu A, Vanhaudenhuyse A, Bahri MA, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum BrainMapp 2012; 33: 778-96
Bonhomme V, Vanhaudenhuyse A, Demertzi A, et al. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 2016; 125: 873-88
Margulies DS, Bottger J, Long X, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magn Reson Mater Physics Biol Med 2010; 23: 289-307
Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI systemlevel baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014; 52: 35-46
Corfield DR, Murphy K, Josephs O, Adams L, Turner R. Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation? Neuroimage 2001; 13: 1207-11
Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol 2009; 22: 547-52
Veselis RA, Feshchenko VA, Reinsel RA, Beattie B, Akhurst TJ. Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology 2005; 102: 26-34
Drummond JC, Dao AV, Roth DM, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 2008; 108: 225-32
Sarasso S, Boly M, Napolitani M, et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol 2015; 25: 3099-105
Siclari F, Larocque JJ, Postle BR, Tononi G. Assessing sleep consciousness within subjects using a serial awakening paradigm. Front Psychol 2013; 4: 542
Noreika V, Jylhankangas L, Moro L, et al. Consciousness lost and found: subjective experiences in an unresponsive state. Brain Cogn 2011; 77: 327-34
Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB. Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage 2007; 35: 105-20