VANHAUDENHUYSE, Audrey ✱; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Centre interdisciplinaire d'algologie
Sanders, R. D.; Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States, Wellcome Department of Imaging Neuroscience, Department of Anaesthesia, Surgical Outcomes Research Centre, University College London Hospital, London, United Kingdom
Sleigh, J.; Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
Bruno, Marie-Aurélie ; GIGA-Consciousness, Coma Science Group, Pain and Hypnosis, Anesthesia and Intensive Care Laboratories, GIGA Research, University, CHU University Hospital of Liège, Liège, Belgium
Demertzi, Athina ; Université de Liège - ULiège > Centre de recherches du cyclotron
Bahri, Mohamed Ali ; Université de Liège - ULiège > Centre de recherches du cyclotron
JAQUET, Océane ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Sanfilippo, Julien ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Baquero Duarte, Katherine Andrea ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie du système nerveux
Boly, Mélanie
Brichant, Jean-François ; Université de Liège - ULiège > Département des sciences cliniques > Anesthésie et réanimation
Laureys, Steven ✱; Université de Liège - ULiège > GIGA : Coma Group
Bonhomme, Vincent ✱; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-94
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology 2015; 123: 937-60
Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The a2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36
Sanders RD, Maze M. Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway. Can J Anaesth 2011; 58: 149-56
Zecharia AY, Franks NP. General anesthesia and ascending arousal pathways. Anesthesiology 2009; 111: 695-6
Gomez F, Phillips C, Soddu A, et al. Changes in effective connectivity by propofol sedation. PLoS One 2013; 8: e71370
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010; 363: 2638-50
Djaiani G, Silverton N, Fedorko L, et al. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology 2016; 124: 362-8
Su X, Meng ZT, Wu XH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 2016; 388: 1893-902
Ni J, Wei J, Yao Y, Jiang X, Luo L, Luo D. Effect of dexmedetomidine on preventing postoperative agitation in children: a meta-analysis. PLoS One 2015; 10: e0128450
Turunen H, Jakob SM, Ruokonen E, et al. Dexmedetomidine versus standard care sedation with propofol or midazolam in intensive care: an economic evaluation. Crit Care 2015; 19: 67
Guldenmund P, Vanhaudenhuyse A, Boly M, Laureys S, Soddu A. A default mode of brain function in altered states of consciousness. Arch Ital Biol 2012; 150: 107-21
Boveroux P, Vanhaudenhuyse A, BrunoMA, et al. Breakdownof within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010; 113: 1038-53
Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci USA 2009; 106: 11376-81
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133: 161-71
Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011; 23: 570-8
Heine L, Soddu A, Gomez F, et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 2012; 3: 295
Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011; 57: 198-205
Guldenmund P, Demertzi A, Boveroux P, et al. Thalamus, brainstem and salience network connectivity changes during mild propofol sedation and unconsciousness. Brain Connect 2013; 3: 273-85
Boly M, Perlbarg V, Marrelec G, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA 2012; 109: 5856-61
Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 41-8
Dyck JB, Maze M, Haack C, Azarnoff DL, Vuorilehto L, Shafer SL. Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology 1993; 78: 821-8
Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006; 103: 13848-53
Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 2349-56
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003; 100: 253-8
Reed SJ, Plourde G. Attenuation of high-frequency (50-200 Hz) thalamocortical EEG rhythms by propofol in rats is more pronounced for the thalamus than for the cortex. PLoS One 2015; 10: e0123287
Akeju O, LoggiaML, Catana C, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidineinduced unconsciousness. Elife 2014; 3: e04499
Abulafia R, Zalkind V, Devor M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 2009; 29: 7053-64
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010; 214: 655-67
Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012; 32: 4935-43
Maquet P, Peters J, Aerts J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996; 383: 163-6
Soddu A, Vanhaudenhuyse A, Bahri MA, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum BrainMapp 2012; 33: 778-96
Bonhomme V, Vanhaudenhuyse A, Demertzi A, et al. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 2016; 125: 873-88
Margulies DS, Bottger J, Long X, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magn Reson Mater Physics Biol Med 2010; 23: 289-307
Demertzi A, Gomez F, Crone JS, et al. Multiple fMRI systemlevel baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014; 52: 35-46
Corfield DR, Murphy K, Josephs O, Adams L, Turner R. Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation? Neuroimage 2001; 13: 1207-11
Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol 2009; 22: 547-52
Veselis RA, Feshchenko VA, Reinsel RA, Beattie B, Akhurst TJ. Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology 2005; 102: 26-34
Drummond JC, Dao AV, Roth DM, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 2008; 108: 225-32
Sarasso S, Boly M, Napolitani M, et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol 2015; 25: 3099-105
Siclari F, Larocque JJ, Postle BR, Tononi G. Assessing sleep consciousness within subjects using a serial awakening paradigm. Front Psychol 2013; 4: 542
Noreika V, Jylhankangas L, Moro L, et al. Consciousness lost and found: subjective experiences in an unresponsive state. Brain Cogn 2011; 77: 327-34
Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB. Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage 2007; 35: 105-20
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.