Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach.
De Seny, Dominique; Fillet, Marianne; Meuwis, Marie-Aliceet al.
2005 • In Arthritis and Rheumatism, 52 (12), p. 3801-12
[en] OBJECTIVE: To identify serum protein biomarkers specific for rheumatoid arthritis (RA), using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. METHODS: A total of 103 serum samples from patients and healthy controls were analyzed. Thirty-four of the patients had a diagnosis of RA, based on the American College of Rheumatology criteria. The inflammation control group comprised 20 patients with psoriatic arthritis (PsA), 9 with asthma, and 10 with Crohn's disease. The noninflammation control group comprised 14 patients with knee osteoarthritis and 16 healthy control subjects. Serum protein profiles were obtained by SELDI-TOF-MS and compared in order to identify new biomarkers specific for RA. Data were analyzed by a machine learning algorithm called decision tree boosting, according to different preprocessing steps. RESULTS: The most discriminative mass/charge (m/z) values serving as potential biomarkers for RA were identified on arrays for both patients with RA versus controls and patients with RA versus patients with PsA. From among several candidates, the following peaks were highlighted: m/z values of 2,924 (RA versus controls on H4 arrays), 10,832 and 11,632 (RA versus controls on CM10 arrays), 4,824 (RA versus PsA on H4 arrays), and 4,666 (RA versus PsA on CM10 arrays). Positive results of proteomic analysis were associated with positive results of the anti-cyclic citrullinated peptide test. Our observations suggested that the 10,832 peak could represent myeloid-related protein 8. CONCLUSION: SELDI-TOF-MS technology allows rapid analysis of many serum samples, and use of decision tree boosting analysis as the main statistical method allowed us to propose a pattern of protein peaks specific for RA.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
De Seny, Dominique ✱; Centre Hospitalier Universitaire de Liège - CHU > Rhumatologie
Fillet, Marianne ✱; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Lutteri, Laurence ; Centre Hospitalier Universitaire de Liège - CHU > Chimie médicale
Ribbens, Clio ; Centre Hospitalier Universitaire de Liège - CHU > Rhumatologie
Bours, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Génétique
Wehenkel, Louis ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Piette, Jacques ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Virologie - Immunologie - GIGA-Research
Malaise, Michel ; Centre Hospitalier Universitaire de Liège - CHU > Rhumatologie
Merville, Marie-Paule ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
✱ These authors have contributed equally to this work.
Language :
English
Title :
Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach.
Publication date :
2005
Journal title :
Arthritis and Rheumatism
ISSN :
0004-3591
eISSN :
1529-0131
Publisher :
Wiley Liss, Inc., New York, United States - New York
Stenger AA, van Leeuwen MA, Houtman PM, Bruyn GA, Speerstra F, Barendsen BC, et al. Early effective suppression of inflammation in rheumatoid arthritis reduces radiographic progression. Br J Rheumatol 1998;37:1157-63.
Feldmann M, Maini RN, Anti-TNF α therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001;19:163-96.
Beckers C, Ribbens C, Andre B, Marcelis S, Kaye O, Mathy L, et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 2004;45:956-64.
Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998;101:273-81.
Van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, de Jong BA, Breedveld FC. Verweij CL, et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum 2004;50:709-15.
Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 2004;50:380-6.
Swedler W, Wallman J, Froelich CJ, Teodorescu M. Routine measurement of IgM, IgG, and IgA rheumatoid factors: high sensitivity, specificity, and predictive value for rheumatoid arthritis. J Rheumatol 1997;24:1037-44.
Jonsson T, Steinsson K, Jonsson H, Geirsson AJ, Thorsteinsson J, Valdimarsson H. Combined elevation of IgM and IgA rheumatoid factor has high diagnostic specificity for rheumatoid arthritis. Rheumatol Int 1998;18:119-22.
Rodland KD. Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem 2004;37:579-83.
Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics 2000;1:395-416.
Pusch W, Flocco MT, Leung SM, Thiele H, Kostrzewa M. Mass spectrometry-based clinical proteomics. Pharmacogenomics 2003;4:463-76.
Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev 2004;23:34-44.
Wadsworth JT, Somers KD, Stack BC Jr, Cazares L, Malik G, Adam BL, et al. Identification of patients with head and neck cancer using serum protein profiles. Arch Otolaryngol Head Neck Surg 2004;130:98-104.
Koopmann J, Zhang Z, White N, Rosenzweig J, Fedarko N, Jagannath S, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res 2004;10:860-8.
Zhukov TA, Johanson RA, Cantor AB, Clark RA, Tockman MS. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 2003;40:267-79.
Xiao XY, Tang Y, Wei XP, He DC. A preliminary analysis of non-small cell lung cancer biomarkers in serum. Biomed Environ Sci 2003;16:140-8.
Won Y, Song HJ, Kang TW, Kim JJ, Han BD, Lee SW. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 2003;3:2310-6.
Vlahou A, Laronga C, Wilson L, Gregory B, Fournier K, Mc-Gaughey D, et al. A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer 2003;4:203-9.
Lehrer S, Roboz J, Ding H, Zhao S, Diamond EJ, Holland JF, et al. Putative protein markers in the sera of men with prostatic neoplasms. BJU Int 2003;92:223-5.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315-24.
Fung ET, Enderwick C. ProteinChip clinical proteomics: computational challenges and solutions. Biotechniques 2002;Suppl:34-8.
Breiman L, Friedman JH, Olsen RA, Stone CJ. Classification and regression tree. New York: Chapman & Hall; 1984.
Rai AJ, Zhang Z, Rosenzweig J, Shih IeM, Pham T, Fung ET, et al. Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 2002;126:1518-26.
Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62:3609-14.
Geurts P, Fillet M, de Seny D, Meuwis MA, Malaise M, Merville MP, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 2005;21:3138-45.
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. New York: Springer. 2001.
Freund Y, Schapire RE, editors. A decision-theoretic generalization of on-line learning and an application to boosting. Proceedings of Second European Conference on Computational Learning Theory; 1995 March 13-15; Barcelona, Spain, p. 23-7.
Wehenkel L. Automatic learning techniques in power systems. Boston: Kluwer Academic; 1998.
Uchida T, Fukawa A, Uchida M, Fujita K, Saito K. Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. J Proteome Res 2002;1:495-9.
Liao H, Wu J, Kuhn E, Chin W, Chang B, Jones MD, et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum 2004;50:3792-803.
Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments, Bioinformatics 2004;20:777-85.
Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004;65:323-32.
Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations [review]. Mol Cell Proteomics 2004;3:367-78.
Saulot V, Vittecoq O, Charlionet R, Fardellone P, Lange C, Marvin L, et al. Presence of autoantibodies to the glycolytic enzyme α-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum 2002;46;1196-201.
Tilleman K, van Beneden K, Dhondt A, Hoffman I, de Keyser F, Veys E, et al. Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. Proteomics 2005;5:2247-57.