Abstract :
[en] A method was developed for the quantitative analysis of six water-soluble vitamins (thiamine, nicotinamide, riboflavine, pyridoxine, ascorbic acid and pantothenic acid) in a pharmaceutical formulation, using free solution capillary zone electrophoresis (CZE) in uncoated fused silica capillaries and UV detection. The influence of different parameters, such as the nature of the buffer anionic component and buffer concentration on the CZE separation of vitamins was investigated using four vitamins of the B group as model compounds. A good compromise between resolution, analysis time and analyte stability was obtained by use of a 50 mM borax buffer of pH 8.5. This CZE method was found to be very useful for the separation of more complex samples, a mixture of ten water-soluble vitamins being completely resolved in about 10 min. However, cyanocobalamine could not be separated from nicotinamide in this CZE system, the two compounds being in uncharged form at the pH used. These two compounds could easily be resolved by micellar electrokinetic chromatography (MEKC), the anionic surfactant dodecylsulfate being added to the running buffer at 25 mM concentration. In the pharmaceutical formulation, some excipients were found to be adsorbed to the capillary surface, giving rise to a progressive decrease of the electroosmotic flow and consequently to a simultaneous increase of analyte migration times. A capillary wash with sodium hydroxide had to be made between successive runs in order to minimize these effects. Good results with respect to linearity, precision and accuracy were obtained in the concentration range studied for the six vitamins, using nicotinic acid as internal standard.
Scopus citations®
without self-citations
116