[en] The drillhole information from the Lontzen–Poppelsberg site has demonstrated three orebodies and has allowed the estimation of the extension of the lodes, their dip, and the location at the ground surface. The localisation of the lodes makes them excellent targets for further exploration with geophysics. This deposit is classified as a Mississippi Valley Type (MVT) deposit. It consists mainly of Pb–Zn–Fe sulphides that display contrasting values in resistivity, chargeability, density, and magnetic susceptibility, with regards to the sedimentary host rocks. The dipole–dipole direct current (DC) resistivity and induce polarization (IP) profiles have been collected and inverted to successfully delineate the Pb–Zn mineralization and the geological structures. Short-spacing EM34 electromagnetic conductivity data were collected mainly on the top of Poppelsberg East lode and have revealed a conductive body matching with the geologically modelled mineralization. Gravity profiles have been carried out perpendicularly to the lode orientation; they show a strong structural anomaly. High resolution ground magnetic data were collected over the study area, but they showed no anomaly over the ore deposits. The geophysical inversion results are complementary to the model based on drill information, and allow us to refine the delineation of the mineralization. The identification of the geophysical signatures of this deposit permits targeting new possible mineralization in the area.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Evrard, Maxime ; Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Leach, D.L.; Sangster, D.F. Mississippi Valley type lead zinc deposits. In Mineral Deposit Models; Special Paper; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1993; Volume 40, pp. 289–314.
Leach, D.L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A Deposit Model for Mississippi Valley-Type Lead Zinc Ores: Chap. A of Mineral Deposit Models for Resources Assessment; U.S. Geological Survey Scientific Investigation Report; United States Geological Survey: Reston, VA, USA, 2010.
USGS. ZINC, Mineral Commodity Summaries; USGS: Reston, VA, USA, 2017; pp. 192–193.
Zinc Outlook 2018: Will Prices Continue to Rally? Available online: http://investingnews.com/daily/resource-investing/base-metals investing/zinc-investing/zinc-outlook/ (accessed on 8 January 2018).
European Commission. Report on Critical Raw Material for the EU: Report of the Ad Hoc Working Group on Defining Critical Raw Materials, 2014. Available online: http://www.catalysiscluster.eu/wp/wp-content/uploads/2015/05/2014_Critical-raw-materials-for-the-EU-2014.pdf (accessed on 2 November 2017).
IEP on Raw Materials. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/content/european-exploration-project (accessed on 11 November 2017).
Mineral4EU. Available online: http://www.minerals4eu.eu/ (accessed on 11 November 2017).
The Promine Project. Available online: http://promine.gtk.fi/index.php/about (accessed on 9 November 2017).
Blue Mining. Available online: http://www.bluemining.eu/ (accessed on 11 November 2017).
Ford, K.; Keating, P.; Thomas, M.D. Overview of geophysical signatures associated with Canadian ore deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 939–970.
Hambleton, W.W.; Lyden, J.P.; Broockie, D.C. Geophysical investigation in the Tri-State Zinc and Lead Mining district. Symp. Geophys. Kansas Kansas Geol. Surv. 1959, 137, 357–375.
Seigel, H.O.; Hill, H.L.; Baird, J.G. Discovery case history of the pyramid ore bodies Pine Point, Northwest Territories, Canada. Geophysics 1968, 33, 645–656.
Lajoie, J.J.; Klein, J. Geophysical exploration at the Pine Point Mines Ltd, zinc-lead property, Northwest Territories, Canada. In Geophysics and Geochemistry in the Search for Metallic Ores; Hood, P.J., Ed.; Geological Survey of Canada: Ottawa, ON, Canada, 1979; Volume 31, pp. 653–664.
Mutton, A.L. The application of geophysics during the evaluation of the Century zinc deposit. Geophysics 2000, 65, 1946–1960.
Dewing, K.; Turner, E.; Harrison, J.C. Geological history, mineral occurrences and mineral potential of the sedimentary rocks of the Canadian Arctic Archipelago. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 733–753.
Paradis, S.; Hannigan, P.; Dewing, K. Mississippi Valley-Type Lead-Zinc deposits (MVT). In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 185–203.
Dejonghe, L.; Ladeuze, F.; Jans, D. Atlas des gisements plombo-zincifères du Synclinorium de Verviers (Est de la Belgique). Mémoire-Service géologique de Belgique 1993, 33, 1–483.
Bishop, J.R.; Emerson, D. Geophysical properties of zinc-bearing deposits. Aust. J. Earth Sci. 1999, 46, 311–328.
Scott, R.L.; Turner, R.; Whiting, T.H. Role of geophysics in exploration for MVT lead-zinc deposits on the Lennard Shelf, Western Australia. Explor. Geophys. 1994, 25, 163–163.
Isles, D.; Watt, M.; Harman, P.; Lebel, A. Geophysical experience from the Blendevale deposit WA. Explor. Geophys. 1987, 18, 108–110.
Buchhorn, I.J. Geology and mineralization of the Wagon Pass prospect, Napier Range, Lennard Shelf, Western Australia. In Geological Aspects of the Discovery of Some Important Mineral Deposits in Australia; Glasson, K.R., Rattigan, J.H., Eds.; Australian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 1986; Volume 17, pp. 163–172.
Krahenbuhl, A.; Hitzman, M. Geophysical modeling of two willemite deposits, Vazante (Brazil) and Beltana (Australia). In Proceedings of the 74th SEG Annual Meeting, Denver, CO, USA, 10–15 October 2004.
Dejonghe, L. Mineral Deposits of Belgium. Bull. Soc. Belge Géol. 1985, 95, 203–212.
Redecke, P.; Friedrich, G. Constraints for sulphides mineralization in the Lower Rhine Basin, Germany. In Source, Transport and Deposition of Metals; Pagel, M., Leroy, O., Eds.; CRC Press/Balkema: Rotterdam, The Netherlands, 1991; pp. 481–484.
Dewaele, S.; Muchez, P.; Banks, D. Fluid evolution along multistage composite fault systems at the southern margin of the Lower Paleozoic Anglo-Brabant fold belt, Belgium. Geofluids 2004, 4, 1–16.
Muchez, P.; Sintubin, M.; Swennen, R. Origin and migration pattern of paleofluids during orogeny: Discussion on the Variscides of Belgium and Northern France. J. Geochem. Explor. 2000, 69–70, 47–51.
De Magnée, I. Contribution à l’étude génétique des gisements belges de plomb, zinc et barytine. Econ. Geol. Monogr. 1967, 3, 255–266.
Dejonghe, L. Zinc-lead deposits of Belgium. Ore Geol. Revue 1998, 2, 329–354.
Muchez, P.; Heijlen, W.; Banks, D.; Blundell, C.; Boni, M.; Grandia, F. Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol. Rev. 2005, 27, 241–267.
Laloux, M.; Geukens, F.; Ghysel, P.; Hance, L. Carte Géologique de Wallonie Henri-Chapelle-Raeren 43/1-2; Service géologique de Belgique: Bruxelles, Belgium, 2010.
Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001, 27, 1019–1029.
Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2011, 95, 135–156.
Zonge, K.; Wynn, J.; Urquhart, S. Chapter 9, Resitivity, Induced Polarization, and Compex Resistivity. In Near-Surface Geophysics; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005; p. 36.
Sumner, J.S. The induced-polarization exploration method. In Geophysics and Geochemistry in the Search for Metallic Ores; Geological Survey of Canada, Economic Geology Report; Peter, J.H., Ed.; Canadian Society of Petroleum: Calgary, AB, Canada, 1979; Volume 31, pp. 123–133.
Oldenburg, D.W.; Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 1999, 64, 403–416.
Marescot, L.; Loke, M.H.; Chapellier, D.; Delaloye, R.; Lambiell, C.; Reynard, E. Assessing Reliability of 2D Resistivity Imaging in Mountain Permafrost Studies Using the Depth of Investigation Index Method; Near Surface Geophysics; European Association of Geoscientists and Engineers: Houten, The Netherlands, 2003; pp. 57–67.
Caterina, D.; Hermans, T.; Nguyen, F. Case studies of incorporation of prior information in electrical resistivity tomography: Comparison of different approaches. Near Surf. Geophys. 2014, 12, 451–465.
Geotomo Software. RES2DINV ver. 4.0. Rapid 2-D Resistivity & IP Inversion Using the Least Squares Method; Geotomo Software: Gelugor, Malaysia, 2011.
Tikhonov, A.N.; Arsenin, V.A. Solution of Ill-Posed Problems; Winston & Sons: New York, NY, USA, 1977.
Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844.
Pierwola, J. Using Geoelectrical Imaging to Recognize Zn-Pb Post-Mining Waste Deposits. Pol. J. Environ. Stud. 2015, 24, 2127–2137.
Frischknecht, F.C. Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys. Quart. Colo. Sch. Min. 1967, 65, 1–326.
Zhdanov, M.S. Electromagnetic geophysics: Notes from the past and the road ahead. Geophysics 2010, 75, A49–A66.
Seigel, H.O. A Guide to High Precision Land Gravimeter Surveys; Scintrex Limited: Concord, ON, Canada, 1995.
Chouteau, M. Géophysique Appliquée I: Gravimétrie; Ecole polytechnique de Montreal: Montreal, QC, Canada, 2002.
Van Camp, M. Efficiency of tidal corrections on absolute gravity measurements at the Membach station. In IMG-2002 Instrumentation and Metrology in Gravimetry, Cahiers du Centre Européen de Géodynamique et de Séismologie; Centre Européen de Géodynamique et de Séismologie: Luxembourg, 2003; Volume 22, pp. 99–103.
Union Minière. Traitement du Préconcentré Gravimétrique du Minerai de Lontzen par Séparation Magnétique à Haute Intensité et Par Milieu Dense; Archives of Union Minière Company: Bruxelles, Belgium, 1984.
Coppola, V.; Boni, M.; Gilg, H.A.; Balassone, G.; Dejonghe, L. The “calamine” nonsulfide Zn-Pb deposits of Begium: Petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 2008, 33, 187–210.
Dewing, K.; Sharp, R.J.; Muraro, T. Exploration History and Mineral Potential of the Central Arctic Zn-Pb District, Nunavut. Arctic 2006, 59, 415–427.
Slowey, E. Technical Report on the Mallow Base Metal Exploration Project, County Cork, Ireland, Rathdowney Resources Limited; 04/10; Rathdowney Resources Limited: Dublin, Ireland, 2010.
Carvalho, D.L.; Vidotti, R.M.; Araujo Filho, J.O.; Meneses, P.R. Geology, airborne geophysics and ground gravity of the central graben of Agua Bonita, Brazil. Rev. Bras. Geofis. 2011, 30, 483–494.
Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152.
Bouabdellah, M.; Brown, AC.; Sangster, D.F. Mechanisms of formation of internal sediments at the Beddiane lead-zinc deposit, Toussit mining district, north-eastern Morocco. In Carbonate-Hosted Lead-Zinc Deposits; Sangster, D.F., Ed.; Society of Economic Geologists Special Publication: Littleton, CO, USA, 1996; Volume 4, pp. 356–363.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.