European Technology and Innovation Platform, Renewable Heating and Cooling. Geothermal Energy Pannel. Available online: http://www.rhc-platform.org/structure/geothermal-technology-panel/ (accessed on 6 July 2017).
Rees, S. Advances in Ground Source Heat Pump Systems; Woodhead Publishing: Sawston, UK, 2016; ISBN 978-0-08-100311-4.
Brandl, H. Energy foundations and other thermo-active ground structures. Geotechnique 2006, 56, 81-122. [CrossRef]
Adam, D.; Markiewicz, R. Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 2009, 59, 229-236. [CrossRef]
Bidarmaghz, A.; Narsilio, G.; Johnston, I. Numerical Modelling of Ground Heat Exchangers with Different Ground Loop Configurations for Direct Geothermal Applications. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2-6 September 2013.
Batini, N.; Rotta Loira, A.F.; Conti, P.; Testi, D.; Grassie, W.; Laloui, L. Energy and geotechnical behaviour of energy piles for different design solutions. Appl. Therm. Eng. 2015, 86, 199-213. [CrossRef]
Alberti, L.; Angelotti, A.; Antelmi, M.; La Licata, I. A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers. Energies 2017, 10, 703. [CrossRef]
Delaleux, F.; Py, X.; Olives, R.; Dominguez, A. Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl. Therm. Energy 2012, 33-34, 92-99. [CrossRef]
Di Donna, A.; Barla, M. The role of ground conditions on energy tunnels' heat exchange. Environ. Geotech. 2016, 3, 214-224. [CrossRef]
Wołoszyn, J.; Gołas, A. Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method. Energy Convers. Manag. 2014, 87, 1297-1304. [CrossRef]
Low, J. Thermal Conductivity of Soils for Energy Foundation Applications. Ph.D. Thesis, University of Southampton, Southampton, UK, 2015.
Laloui, L.; Nuth, M.; Vulliet, L. Experimental and numerical investigations of the behaviour of heat exchanger pile. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 763-781. [CrossRef]
Rees, S.; Adjali, M.; Zhou, Z.; Davies, M.; Thomas, H. Ground heat transfer effects on the thermal performance of earth-contact structures. Renew. Sustain. Energy Rev. 2000, 4, 213-265. [CrossRef]
Thirumaleshwar, M. Fundamentals of Heat and Mass Transfer; Pearson Education: Delhi, India, 2009; ISBN 8177585193.
De Vries, D.A. Simultaneous transfer of heat and moisture in porous media. Trans. Am. Geophys. Union 1958, 39, 909-916. [CrossRef]
De Vries, D.A. Thermal properties of soils. In Physics of Plant Environment, 2nd ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1966.
De Vries, D.A. Heat transfer in soils. In Heat and Mass Transfer in the Biosphere. Part 1. Transfer Processes in Plant Environment; De Vries, D.A., Afghan, N.H., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1974.
Woodside, W.; Messner, J.H. Thermal conductivity of porous media. I. Unconsolidated Sands. J. Appl. Phys. 1961, 32, 1688-1699. [CrossRef]
Farouki, O.T. Thermal Properties of Soils; No. CRREL-MONO-81-1; U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1981.
Midttømme, K.; Roaldset, E. Thermal conductivity of sedimentary rocks: Uncertainties in measurement and modelling. Geol. Soc. Lond. Spec. Publ. 1999, 158, 45-60. [CrossRef]
Hellstrom, G. Ground Heat Storage, Thermal Analysis of Duct Storage Systems; Department of Mathematical Physics, University of Lund: Lund, Sweden, 1991.
Liebel, H.T. Influence of Groundwater on Measurements of Thermal Properties in Fractured Aquifers. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2012.
Campanella, R.G.; Mitchell, J.K. Influence of temperature variations on soil behavior. J. Soil Mech. Found. Div. 1968.
Hueckel, T.; Baldi, G. Thermoplasticity of saturated clays: Experimental constitutive study. J. Geotech. Eng. Div. 1990, 116, 1778-1796. [CrossRef]
Cekerevac, C.; Laloui, L. Experimental study of the thermal effects on the mechanical behaviour of a clay. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 209-228. [CrossRef]
Laloui, L.; Olgun, C.G.; Sutman, M.; McCartney, J.S.; Coccia, C.J.; Abuel-Naga, H.M.; Bowers, G.A. Issues involved with thermoactive geotechnical systems: Characterization of thermomechanical soil behavior and soil-structure interface behavior. J. Deep Found. Inst. 2014, 8, 108-112. [CrossRef]
Jensen, C.; Xing, C.; Folsom, C.; Ban, H.; Phillips, J. Design and validation of a high-temperature comparative thermal-conductivity measurement system. Int. J. Thermophys. 2012, 33, 311-329. [CrossRef]
ASTM International. Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus; ASTMC177-13; ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
British Standards Institution (BSI). Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance; BS EN 12667:2001; British Standards Institution (BSI): London, UK, 2001.
International Organization for Standardization. Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties-Guarded Hot Plate Apparatus; ISO 8302:1991; International Organization for Standardization: Geneva, Switzerland, 1991.
Salmon, D. Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference materials. Meas. Sci. Technol. 2001, 12. [CrossRef]
Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. J. Electron. Packag. 2016, 138. [CrossRef]
Tarnawski, V.R.; Momose, T.; Leong, W.H.; Bovesecchi, G.; Coppa, P. Thermal conductivity of standard sands. Part I. Dry-state conditions. Int. J. Thermophys. 2009, 30, 949-968. [CrossRef]
Nikolaev, I.V.; Leong, W.H.; Rosen, M.A. Experimental investigation of soil thermal conductivity over a wide temperature range. Int. J. Thermophys. 2013, 34, 1110-1129. [CrossRef]
Hiraiwa, Y.; Kasubuchi, T. Temperature dependence of thermal conductivity over a wide range of temperature (5-75 °C). Eur. J. Soil Sci. 2000, 51, 211-218. [CrossRef]
Low, J.E.; Loveridge, F.A.; Powrie, W. Error analysis of the thermal cell for soil thermal conductivity measurement. In Proceedings of the Institution of Civil Engineers ICE-Geotechnical Engineering; ICE Publishing: London, UK, 2017; Volume 170, pp. 191-200. [CrossRef]
Clarke, B.G.; Agab, A.; Nicholson, D. Model specification to determine thermal conductivity of soils. In Proceedings of the Institution of Civil Engineers-Geotechnical Engineering; ICE publishing: London, UK, 2008; Volume 161, pp. 161-168. [CrossRef]
Alrtimi, A.; Rouainia, M.; Haigh, S. Thermal conductivity of a sandy soil. Appl. Therm. Eng. 2016, 106, 551-560. [CrossRef]
ASTM International. Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique; ASTM E1225-13; ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
Barry-Macaulay, D.; Bouazza, A.; Singh, R.M.; Wang, B.; Ranjith, P.G. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geol. 2013, 164, 131-138. [CrossRef]
Schmidt, A.J.; Cheaito, R.; Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 2009, 80, 094901. [CrossRef] [PubMed]
Van der Held, E.F.M.; Van Drunen, F.G. A method of measuring the thermal conductivity of liquids. Physica 1949, 15, 865-881. [CrossRef]
Blackwell, J.H. A transient-flow method for determination of thermal constants of insulating materials in bulk Part I-Theory. J. Appl. Phys. 1954, 25, 137-144. [CrossRef]
Teka, Thermophysical Instruments-Geothermal Investigation. 2017. Available online: http://www.te-ka.de/index.php/en/ (accessed on 6 July 2017).
Isomet. Portable Heat Transfer Analyser. Available online: http://appliedp.com/produkty/isomet/ (accessed on 29 November 2017).
ASTM International. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure; ASTM D5334-14; ASTM International: West Conshohocken, PA, USA, 2000. [CrossRef]
Low, J.; Loveridge, F.; Powrie, W. A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications. Acta Geotech. 2015, 10, 209-218. [CrossRef]
Kasubuchi, T. Development of in-situ soil water measurement by heat-probe method. Jpn. Agric. Res. Q. 1992, 26, 178-181.
Campbell, G.S.; Calissendorff, C.; Williams, J.H. Probe formeasuring soil specific heat using a heat-pulsemethod. Soil Sci. Soc. Am. J. 1991, 55, 291-293. [CrossRef]
Bilskie, J.R. Dual Probe Methods for Determining Soil Thermal Properties: Numerical Laboratory Study. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1994.
Rajeev, P.; Kodikara, J. Estimating apparent thermal diffusivity of soil using field temperature time series. Geomech. Geoengin. 2016, 11, 28-46. [CrossRef]
Lockmuller, N.; Redgrove, J.; Kubicar, L.U. Measurement of thermal conductivity with the needle probe. High Temp. High Press. 2003, 35, 127-138. [CrossRef]
Valente, A.; Morais, R.; Tuli, A.; Hopmans, J.W.; Kluitenberg, G.J. Multi-functional probe for small-scale simultaneous measurements of soil thermal properties, water content, and electrical conductivity. Sens. Actuators 2006, 132, 70-77. [CrossRef]
Assael, M.J.; Antoniadis, K.D.; Wakeham, W.A. Historical evolution of the transient hot-wire technique. Int. J. Thermophys. 2010, 31, 1051-1072. [CrossRef]
Merckx, B.; Dudoignon, P.; Garnier, J.P.; Marchand, D. Simplified transient hot-wire method for effective thermal conductivity measurement in geo materials: Microstructure and saturation effect. Adv. Civ. Eng. 2012, 2012. [CrossRef]
International Organization for Standardization. Plastics-Determination of Thermal Conductivity and Thermal Diffusivity-Part 2: Transient Plane Heat Source (Hot Disc) Method; ISO 22007-2:2015; International Organization for Standardization: Geneva, Switzerland, 2015.
Gustafsson, S.; Thermetrol, A.B. Device for Measuring Thermal Properties of a Test Substance-the Transient Plane Source (TPS) Method. U.S. Patent 5,044,767, 1991.
Gustafsson, S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991, 62, 797-804. [CrossRef]
Mikulić, D.; Milovanović, B. TCi System for Non-Destructive Determination of Thermal Properties of Materials. In Proceedings of the 10th European Conference on Non-Destructive Testing, Moscow, Russia, 7-11 June 2010; ICNDT: Northampton, UK, 2010; pp. 1364-1373.
Thermtest Inc. Thermtest Thermophysical Instruments. Available online: https://thermtest.com/tps-global (accessed on 6 July 2017).
C-Therm Technologies Ltd. TCi Thermal Conductivity Analyzer. Available online: http://ctherm.com/products/tci-thermal-conductivity/ (accessed on 6 July 2017).
Suleiman, B.M. Thermal Conductivity of Saturated samples using the Hot-Disk Technique. In Proceedings of the 4th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Elounda, Greece, 21-23 August 2006.
Florides, G.; Theofanous, E.; Iosif-Stylianou, I.; Tassou, S.; Christodoulides, P.; Zomeni, Z.; Tsiolakis, E.; Kalogirou, S.; Messaritis, V.; Pouloupatis, P.; et al. Modeling and assessment of the efficiency of horizontal and vertical ground heat exchangers. Energy 2013, 58, 655-663. [CrossRef]
Stylianou, I.I.; Tassou, S.; Christodoulides, P.; Panayides, I.; Florides, G. Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus. Renew. Energy 2016, 88, 418-429. [CrossRef]
Stylianou, I.I.; Florides, G.; Tassou, S.; Tsiolakis, E.; Christodoulides, P. Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers. Energy 2017, 127, 258-270. [CrossRef]
Popov, Y.A.; Pribnow, D.F.C.; Sass, J.H.; Williams, C.F.; Burkhardt, H. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 1999, 28, 253-276. [CrossRef]
Haffen, S.; Geraud, Y.; Diraison, M.; Dezayes, C. Determining fluid flow zones in a geothermal reservoir from thermal conductivity and temperature. Geothermics 2013, 46, 32-41. [CrossRef]
Liu, S.; Feng, C.; Wang, L.; Li, C. Measurement and analysis of thermal conductivity of rocks in the Tarim Basin, Northwest China. Acta Geol. Sin. (Engl. Ed.) 2011, 85, 598-609. [CrossRef]
Mitchell, J.K.; Kao, T.C. Measurement of soil thermal resistivity. J. Geotech. Geoenviron. Eng. 1978, 104, 1307-1320.
Slusarchuk, W.A.; Foulger, P.H. Development and Calibration of a Thermal Conductivity Probe Apparatus for Use in the Field and Laboratory. National Research Council of Canada, Division of Building Research; Technical Paper No. 388; National Research Council Canada: Ottawa, ON, Canada, 1973.
Tarnawski, V.R.; Momose, T.; Leong, W.H. Thermal conductivity of standard sands II. Saturated conditions. Int. J. Thermophys. 2011, 32, 984-1005. [CrossRef]
Tarnawski, V.R.; McCombie, M.L.; Momose, T.; Sakaguchi, I.; Leong, W.H. Thermal conductivity of standard sands. Part III. Full range of saturation. Int. J. Thermophys. 2013, 34, 1130-1147. [CrossRef]
Woodside, W.; Cliffe, J.B. Heat and moisture transfer in closed systems of two granular materials. Soil Sci. 1959, 87, 75-82. [CrossRef]
Kersten, M.S. Thermal Properties of Soils; Bulletin 28; University of Minnesota, Institute of Technology, Engineering Experiment Station: Minneapolis, MN, USA, 1949; Volume LII.
Jackson, R.D.; Taylor, S.A. Thermal conductivity and diffusivity. In Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986.
Sass, J.H.; Lachenbruch, A.H.; Munroe, R.J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J. Geophys. Res. 1971, 76, 3391-3401. [CrossRef]
Moench, A.F.; Evans, D.D. Thermal conductivity and diffusivity of soil using a cylindrical heat source. Soil Sci. Soc. Am. J. 1970, 34, 377-381. [CrossRef]
Bligh, T.P.; Smith, E.A. Thermal conductivity measurements of soils in the field and laboratory using a thermal conductivity probe. Energy Effic. Build. Syst. Rep. 1983, 25, 275.
Jorand, R.; Vogt, C.; Marquart, G.; Clauser, C. Effective thermal conductivity of heterogeneous rocks from laboratory experiments and numerical modelling. J. Geophys. Res. Solid Earth 2013, 118, 5225-5235. [CrossRef]
Smits, K.M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T.H. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles. Vadose Zone J. 2010, 9, 172-180. [CrossRef]
Johansen, O. Thermal Conductivity of Soils; Draft Translated: 637; U.S. Army Corps of Engineering, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1977.
Côté, J.; Konrad, J.M. A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 2005, 42, 443-458. [CrossRef]
Côté, J.; Konrad, J.M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. Int. J. Heat Mass Trans. 2009, 52, 796-804. [CrossRef]
Antilén, M.; Escudey, M.; Förster, J.E.; Moraga, N.; Marty, D.; Fudym, O. Application of the hot disk method to the thermophysical characterization of soils. J. Chil. Chem. Soc. 2003, 48, 27-29. [CrossRef]
Mogensen, P. Fluid to Duct Wall Heat Transfer in Duct System Heat Storage. In Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6-8 June 1983; Swedish Council for Building Research: Stockholm, Sweden, 1983; pp. 652-657.
Gehlin, S. Thermal Response Test: Method Development and Evaluation. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2002.
VDI-Standards. VDI 4640 blatt 3 utilization of the subsurface for thermal purposes. In Underground Thermal Energy Storage; VDI-Gessellschaft Energie und Umwelt (GEU): Berlin, Germany, 2001.
Witte, H.J.L. In situ estimation of ground thermal properties. In Advances in Ground-Source Heat Pump Systems; Rees, S., Ed.; Woodhead Publishing: Sawston, UK, 2016.
Zhang, C.; Guo, Z.; Liu, Y.; Cong, X.; Peng, D. A review on thermal response test of ground-coupled heat pump systems. Renew. Sustain. Energy Rev. 2014, 40, 851-867. [CrossRef]
Li, M.; Lai, A.C. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Appl. Energy 2015, 151, 178-191. [CrossRef]
Microgeneration Installation Standard. MIS 3005 Microgeneration Installation Standard: Requirements for MCS Contractors Undertaking the Supply, Design, Installation, Set to Work, Commissioning and Handover of Microgeneration Heat Pump Systems, Issue 4.3; Microgeneration Installation Standard, Department of Energy and Climate Change: London, UK, 2008.
Recknagel, H.; Sprenger, E.; Schramek, E.-R. Génie Climatique [Taschenbuch für Heizung und Klimatechnik]; Bodson, A., Caradec, C., Pastureau, S., Petit, N., Eds.; Clima & Confort: Dunod, Paris, France, 2013.
Javed, S. Design of ground source heat pump systems. Thermal Modelling and Evaluation of Borehole Heat Transfer. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2012.
Kavanaugh, S.P.; Rafferty, K.D.; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 1997.
Kurevija, T.; Vulin, D.; Macenić, M. Impact of geothermal gradient on ground source heat pump systemmodeling. Rud. Geol. Naft. Zb. 2014, 28, 39-45.
Dehkordi, S.E.; Schincariol, R.A. Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems. Hydrogeol. J. 2014, 22, 189-203. [CrossRef]
Radioti, G.; Sartor, K.; Charlier, R.; Dewallef, P.; Nguyen, F. Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment. Appl. Energy 2017, 200, 89-105. [CrossRef]
Kavanaugh, S.P.; Xie, L.; Martin, C. TRP-1118-Investigation of Methods for Determining Soil and Rock Formation Thermal Properties from Short Term Field Test; Final Report; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2000.
Javed, S.; Fahlén, P. Thermal response testing of a multiple borehole ground heat exchanger. Int. J. Low-Carbon Technol. 2011, 6, 141-148. [CrossRef]
Gehlin, S.; Nordell, B. Determining undisturbed ground temperature for thermal response test. ASHRAE Trans. 2003, 109, 151-156.
Taniguchi, M.; Uemura, T. Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Phys. Earth Planet. Inter. 2005, 152, 305-313. [CrossRef]
Banks, D. An Introduction to Thermogeology. Ground Source Heating and Cooling; Blackwell Publishing: Oxford, UK, 2008; ISBN 978-0-470-67034-7.
Ferguson, G.; Woodbury, A.D. Urban heat island in the subsurface. Geophys. Res. Lett. 2007, 34. [CrossRef]
Zhu, K.; Blum, P.; Ferguson, G.; Balke, K.D.; Bayer, P. The geothermal potential of urban heat islands. Environ. Res. Lett. 2010, 5. [CrossRef]
Menberg, K.; Bayer, P.; Zosseder, K.; Rumohr, S.; Blum, P. Subsurface urban heat islands in German cities. Sci. Total Environ. 2013, 442, 123-133. [CrossRef] [PubMed]
Soldo, V.; Borović, S.; Lepoša, L.; Boban, L. Comparison of different methods for ground thermal properties determination in a clastic sedimentary environment. Geothermics 2016, 61, 1-11. [CrossRef]
Witte, H.J.L.; van Gelder, G.J.; Spitler, J.D. In Situ Measurement of Ground Thermal Conductivity: A Dutch Perspective. ASHRAE Trans. 2002, 108, 263-272.
Wang, H.; Qi, C.; Du, H.; Gu, J. Improved method and case study of thermal response test for borehole heat exchangers of ground source heat pump system. Renew. Energy 2010, 35, 727-733. [CrossRef]
Javed, S.; Nakos, H.; Claesson, J. Amethod to evaluate thermal response tests on groundwater-filled boreholes. ASHRAE Trans. 2012, 118, 540-549.
Acuña, J.; Palm, B. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers. Appl. Energy 2013, 109, 312-320. [CrossRef]
Raymond, J.; Lamarche, L. Development and numerical validation of a novel thermal response test with a low power source. Geothermics 2014, 51, 434-444. [CrossRef]
Dornstädter, J.; Heidinger, P.; Heinemann-Glutsch, B. Erfahrungen aus der Praxis mit dem Enhanced Geothermal Response Test (EGRT). In Proceedings of the Der Geothermiekongress 2008, Karlsruhe, Germany, 11-13 November 2008; pp. 271-279.
Poulsen, S.E.; Alberdi-Pagola, M. Interpretation of ongoing thermal response tests of vertical (BHE) borehole heat exchangers with predictive uncertainty based stopping criterion. Energy 2015, 88, 157-167. [CrossRef]
Ingersoll, L.R.; Zobel, O.J.; Ingersoll, A.C. Heat Conduction with Engineering, Geological, and Other Applications; The University of Wisconsin Press: Madison, WI, USA, 1954.
Carlslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959; ISBN 0-19-853368-3.
American Society of Heating, Refrigerating and Air-Conditioning Engineer (ASHRAE). 2007 ASHRAE Handbook-Heating, Ventilating, and Air-Conditioning Applications (I-P Edition); American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2007.
Beier, R.A.; Smith, M.D. Minimum duration of in-situ tests on vertical boreholes. ASHRAE Trans. 2003, 109, 475-486.
Shonder, J.A.; Beck, J. A New Method to Determine the Thermal Properties of Soil Formations From in Situ Field Tests; Report ORNL/TM-2000/97; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2000.
Austin, W.; Yavuzturk, C.; Spitler, J.D. Development of an In-Situ System and Analysis Procedure for Measuring Ground Thermal Properties. ASHRAE Trans. 2000, 106, 365-379.
Nakos, H. Response Testing and Evaluation of Groundwater-Filled Boreholes: Development and Validation of a New Calculation Tool. Master's Thesis, Chalmers University of Technology, Göteborg, Sweden, 2011.
Javed, S.; Claesson, J. New analytical and numerical solutions for the short-term analysis of vertical ground heat exchangers. ASHRAE Trans. 2011, 117, 3-12.
Marcotte, D.; Pasquier, P. On the estimation of thermal resistance in borehole thermal conductivity test. Renew. Energy 2008, 33, 2407-2415. [CrossRef]
Javed, S.; Spitler, J.; Fahlén, P. An experimental investigation of the accuracy of thermal response tests used to measure ground thermal properties. ASHRAE Trans. 2011, 117, 13-21.
Javed, S.; Spitler, J. Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers. Appl. Energy 2017, 187, 790-806. [CrossRef]
Lamarche, L.; Kajl, S.; Beauchamp, B. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 2010, 39, 187-200. [CrossRef]
Spitler, J.D.; Javed, S.; Ramstad, R.K. Natural convection in groundwater-filled boreholes used as ground heat exchangers. Appl. Energy 2016, 164, 352-365. [CrossRef]
Witte, H.J.L. Error analysis of thermal response tests. Appl. Energy 2013, 109, 302-311. [CrossRef]
Javed, S. Thermal response testing: Results and experiences from a ground source heat pump test facility with multiple boreholes. In Proceedings of the 11th REHVA World Congress (Clima 2013), Prague, Czech Republic, 16-19 June 2013.
Bandos, T.V.; Montero, Á.; Córdoba, P.F.D.; Urchueguía, J.F. Improving parameter estimates obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics 2011, 40, 136-143. [CrossRef]
Sanner, B.; Mands, E.; Sauer, M.; Grundmann, E. Technology, development status, and routine application of Thermal Response Test. In Proceedings of the European Geothermal Congress 2007, Unterhaching, Germany, 30 May-1 June 2007.
Diao, N.; Li, Q.; Fang, Z. Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 2004, 43, 1203-1211. [CrossRef]
Raymond, J.; Therrien, R.; Gosselin, L.; Lefebvre, R. Numerical analysis of thermal response tests with a groundwater flow and heat transfer model. Renew. Energy 2011, 36, 315-324. [CrossRef]
Wagner, V.; Blum, P.; Kübert, M.; Bayer, P. Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers. Geothermics 2013, 46, 22-31. [CrossRef]
Verdoya, M.; Chiozzi, P. Influence of groundwater flow on the estimation of subsurface thermal parameters. Int. J. Earth Sci. 2016, 1-8. [CrossRef]
Sauer, M. Evaluating improper response test data by using superposition of line source approximation. In Proceedings of the European Geothermal Congress EGC 2013, Pisa, Italy, 3-8 June 2013.
Hu, P.; Meng, Q.; Sun, Q.; Zhu, N.; Guan, C. A method and case study of thermal response test with unstable heat rate. Energy Build. 2012, 48, 199-205. [CrossRef]
Spitler, J.; Rees, S.; Yavuzturk, C. More Comments on In-Situ Borehole Thermal Conductivity Testing; The Source: Barrie, ON, Canada, 1999; Volume 12, pp. 4-6.
Gehlin, S.; Hellstrom, G. Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew. Energy 2003, 28, 2221-2238. [CrossRef]
Fujii, H.; Hiroaki, O.; Itoi, R. Thermal Response Tests Using Optical Fiber Thermometers. GRC Trans. 2006, 30, 545-551.
Florides, G.; Kalogirou, S. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger, in Cyprus. Appl. Therm. Eng. 2008, 28, 157-163. [CrossRef]
Acuña, J.; Mogensen, P.; Palm, B. Distributed thermal response test on a U-pipe borehole heat exchanger. In Proceedings of the 11th International Conference on Thermal Energy Storage Effstock 2009, Stockholm, Sweden, 14-17 June 2009; Academic Conferences Publishing: Stockholm, Sweden, 2009.
Loveridge, F.; Holmes, G.; Powrie, W.; Roberts, T. Thermal response testing through the chalk aquifer. In Proceedings of the Institution of Civil Engineers ICE-Geotechnical Engineering; ICE publishing: London, UK, 2013; Volume 166, pp. 197-210. [CrossRef]
Radioti, G.; Delvoie, S.; Charlier, R.; Dumont, G.; Nguyen, F. Heterogeneous bedrock investigation for a closed-loop geothermal system: A case study. Geothermics 2016, 62, 79-92. [CrossRef]
Heske, C.; Kohlsch, O.; Dornstädter, J.; Heidinger, P. Der Enhanced-Geothermal-Response Test als Auslegungsgrundlage undOptimierungstool. Geothermische Standorterkundung: Sonderheft Oberflächennahe Geothermie. Bbr Fachmagazin für Brunnen-und Leitungsbau 2011, 62, 36-43. (In German)
Liebel, H.T.; Huber, K.; Frengstad, B.S.; Ramstad, R.K.; Brattli, B. Temperature footprint of a thermal response test can help to reveal thermogeological information. Nor. Geol Unders. Bull. 2011, 451, 20-31.
Fujii, H.; Okubo, H.; Nishi, K.; Itoi, R.; Ohyama, K.; Shibata, K. An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics 2009, 38, 399-406. [CrossRef]
Hausner, M.B.; Suarez, F.; Glander, K.E.; Van De Giesen, N.; Selker, J.S.; Tyler, S.W. Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data. Sensors 2011, 11, 10859-10879. [CrossRef] [PubMed]
Raymond, J.; Lamarche, L. Simulation of thermal response tests in a layered subsurface. Appl. Energy 2013, 109, 293-301. [CrossRef]
Brandl, H. Thermo-active Ground-Source Structures for Heating and Cooling. Procedia Eng. 2013, 57, 9-18. [CrossRef]
Loveridge, F.; Brettmann, T.; Olgun, G.; Powrie, W. Assessing the applicability of thermal response testing to energy piles. In Proceedings of the Global Perspectives on the sustainable Execution of Foundations Works, Stockholm, Sweden, 21-23 May 2014.
GSHP Association. Thermal Pile: Design, Installation & Materials Standards; Ground Source Heat Pump Association National Energy Centre: Milton Keynes, UK, 2012; p. 85.
Loveridge, F.; Powrie, W. Temperature response functions (G-functions) for single pile heat exchangers. Energy 2013, 57, 554-564. [CrossRef]
Claesson, J.; Javed, S. An analytical method to calculate borehole fluid temperatures for time-scales from minutes to decades. ASHRAE Trans. 2011, 117, 279-288.
Bandos, T.V.; Campos-Celador, Á.; López-González, L.M.; Sala-Lizarraga, J.M. Finite cylinder-source model for energy pile heat exchangers: Effects of thermal storage and vertical temperature variations. Energy 2014, 78, 639-648. [CrossRef]
Hu, P.; Zha, J.; Lei, F.; Zhu, N.; Wu, T. A composite cylindrical model and its application in analysis of thermal response and performance for energy pile. Energy Build. 2014, 84, 324-332. [CrossRef]
Man, Y.; Yang, H.; Diao, N.; Liu, J.; Fang, Z. A new model and analytical solutions for borehole and pile ground heat exchangers. Int. J. Heat Mass Transfer 2010, 53, 2593-2601. [CrossRef]
Maragna, C.; Rachez, X. Innovative Methodology to Compute the Temperature Evolution of Pile Heat Exchangers. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19-25 April 2015.
Zarrella, A.; Emmi, G.; Zecchin, R.; de Carli, M. An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energy Build. 2017, 134, 259-270. [CrossRef]
De Carli, M.; Tonon, M.; Zarrella, A.; Zecchin, R. A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers. Renew. Energy 2010, 35, 1537-1550. [CrossRef]
Franco, A.; Moffat, R.; Toledo, M.; Herrera, P. Numerical sensitivity analysis of thermal response tests (TRT) in energy piles. Renew. Energy 2016, 86, 985-992. [CrossRef]
Park, H.; Lee, S.R.; Yoon, S.; Choi, J.C. Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation. Appl. Energy 2013, 103, 12-24. [CrossRef]
Cecinato, F.; Loveridge, F.A.; Gajo, A.; Powrie, W. A new modelling approach for piled and other ground heat exchanger applications. In Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering 2015, Edinburgh, UK, 13-17 September 2015; ICE Institution of Civil Engineers: London, UK, 2015.
Cecinato, F.; Loveridge, F.A. Influences on the thermal efficiency of energy piles. Energy 2015, 82, 1021-1033. [CrossRef]
Loveridge, F.; Powrie, W.; Nicholson, D. Comparison of two different models for pile thermal response test interpretation. Acta Geotech. 2014, 9, 367-384. [CrossRef]
Ozudogru, T.; Brettmann, T.; Guney Olgun, C.; Martin, I.J.; Senol, A. Thermal Conductivity Testing of Energy Piles: Field Testing and Numerical Modeling. In Proceedings of the GeoCongress 2012, State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25-29 March 2012.
Alberdi-Pagola, M.; Poulsen, S.E. Thermal response testing and performance of quadratic cross section energy piles (Vejle, Denmark). In Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering 2015, Edinburgh, UK, 13-17 September 2015; ICE Institution of Civil Engineers: London, UK, 2015.
Schulze-Makuch, D.; Carlson, D.A.; Cherkauer, D.S.; Malik, P. Scale Dependency of Hydraulic Conductivity in Heterogeneous Media. Water 1999, 37, 904-919. [CrossRef]
Liebel, H.T.; Huber, K.; Frengstad, B.S.; Kalskin Ramstad, R.; Brattli, B. Rock core samples cannot replace thermal response tests-A statistical comparison based on thermal conductivity data from the Oslo Region (Norway). In Zero Emission Buildings, Proceedings of the Renewable Energy 682 Research Conference, Trondheim, Norway, 7-8 June 2010; Haase, M., Hestnes, A.G., Eds.; Renewable Energy Conference & Tapir Academic Press: Trondheim, Norway, 2010; pp. 145-154.
Radioti, G. Shallow Geothermal Energy: Effect of In Situ Conditions on Borehole Heat Exchanger Design and Performance. Ph.D. Thesis, University of Liège, Liège, Belgium, 2016.
Bouazza, A.; Wang, B.; Singh, R.M. Soil effective thermal conductivity from energy pile thermal tests. In Coupled Phenomena in Environmental Geotechnics, Proceedings of the International Symposium, Torino, Italy, 1-3 July 2013; Taylor & Francis: London, UK, 2013; pp. 211-219.
Murphy, K.D.; Mccartney, J.S.; Henry, K.S. Impact of horizontal run-out length on the thermal response of full-scale energy foundations. In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability; ASCE: Reston, VA, USA, 2014; pp. 2715-2724.
Hemmingway, P.; Long, M. Energy piles: Site investigation and analysis. In Proceedings of the Institution of Civil Engineers-Geotechnical Engineering; ICE publishing: London, UK, 2013; Volume 166, pp. 561-575.
Badenes, B.; de Santiago, C.; Nope, F.; Magraner, T.; Urchueguia, J.; de Groot, M.; Pardo de Santayana, F.; Arcos, J.L.; Martin, F. Thermal characterization of a geothermal precast pile in Valencia (Spain). In Proceedings of the European Geothermal Congress 2016, Strasbourg, France, 19-24 September 2016.
Zhang, Y.; Gao, P.; Yu, Z.; Fang, J.; Li, C. Characteristics of ground thermal properties in Harbin, China. Energy Build. 2014, 69, 51-259. [CrossRef]
Beier, R.A.; Smith, M.D.; Spitler, J.D. Reference data sets for vertical boreholes ground heat exchanger models and thermal response tests analysis. Geothermics 2011, 40, 79-85. [CrossRef]
Graham, J. The 2003 R.M. Hardy Lecture: Soil parameters for numerical analysis in clay. Can. Geotech. J. 2006, 43, 187-209. [CrossRef]
Dong, Y.; McCartney, J.S.; Lu, N. Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng. 2015, 33, 207-221.
Allani, M.; Van Lysebetten, G.; Huybrechts, N. Experimental and numerical study of the thermo-mechanical behaviour of energy piles for Belgian practice. In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 1st ed.; Ferrari, A., Laloui, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 405-412, ISBN 978-3-319-52773-4.
Sanner, B. Overview of shallow geothermal systems. In Geotrainet Training Manual for Designers of Shallow Geothermal Systems; McCorry, M., Jones, G.L.L., Eds.; European Federation of Geologists: Brussels, Belgium, 2011; pp. 7-14.
Morpher-Busch, L. Instructions for Using the Thermomap Viewer. 2013. Available online: http://geoweb2. sbg.ac.at/thermomap/Instruction-Manual-Map-Viewer.pdf (accessed on 20 Febuary 2017).
Cérmak, V.; Rybach, L. Thermal conductivity and specific heat of minerals and rock. In Geophysics-Physical Properties of Rocks, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology; New Series, Group V; Springer: Berlin, Germany, 1982; pp. 305-343.
Yavari, N.; Tang, M.; Pereira, J.M.; Hassen, G. Effect of temperature on the shear strength of soils and the soil-structure interface. Can. Geotech. J. 2016, 53, 1186-1194. [CrossRef]
Eriksson, L. Temperature effects on consolidation properties of sulphide clays. In Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, 13-18 August 1989; Taylor & Francis: Rotterdam, The Netherlands, 1989.
Leroueil, S.; Marques, M.E.S. Importance of strain rate and temperature effects in geotechnical engineering. In Measuring and Modelling Time Dependent Soil Behaviour; Geotechnical Special Publication (Book 61); Sheahan, T.C., Kaliakin, V.N., Eds.; American Society of Civil Engineers: New York, NY, USA, 1996.
Vardoulakis, I. Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique 2002, 52, 151-171. [CrossRef]
Cecinato, F.; Zervos, A.; Veveakis, E. A thermomechanical model for the catastrophic collapse of large landslides. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1507-1535. [CrossRef]
Cecinato, F.; Zervos, A. Influence of thermomechanics in the catastrophic collapse of planar landslides. Can. Geotech. J. 2012, 49, 207-225. [CrossRef]
Alonso, E.E.; Zervos, A.; Pinyol, N.M. Thermo-poro-mechanical analysis of landslides: From creeping behaviour to catastrophic failure. Géotechnique 2015, 66, 202-219. [CrossRef]
Rice, J. Heating and weakening of faults during earthquake slip. J. Geophys. Res. 2006, 111, B5. [CrossRef]
Sulem, J.; Lazar, P.; Vardoulakis, I. Thermo-Poro Mechanical Properties of Clayey Gouge and Application to Rapid Fault Shearing. Int. J. Num. Anal. Meth. Geomech. 2007, 31, 523-540. [CrossRef]
Filimonov, M.; Vaganova, N. Simulation of thermal stabilization of soil around various technical systems operating in permafrost. Appl. Math. Sci. 2013, 7, 7151-7160. [CrossRef]
Uzer, A. Evaluation of Freezing-Thawing Cycles for Foundation Soil Stabilization. Soil Mech. Found. Eng. 2016, 53, 202-209. [CrossRef]
Makusa, G.; Mácsik, J.; Holm, G.; Knutsson, S. Laboratory test study on the effect of freeze-thaw cycles on strength and hydraulic conductivity of high water content stabilized dredged sediments. Can. Geotech. J. 2016, 53, 1038-1045. [CrossRef]
Maranha, J.; Pereira, C.; Vieira, A. Thermo-Viscoplastic Subloading Soil Model for Isotropic Stress and Strain Conditions. In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 1st ed.; Ferrari, A., Laloui, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 405-412. ISBN 978-3-319-52773-4.
Hueckel, T.; Pellegrini, R. Thermoplastic modelling of undrained failure of saturated clay due to heating. Soils Found. 1991, 31, 1-16. [CrossRef]
Laloui, L.; Cekerevac, C. Thermo-plasticity of clays: An isotropic yield mechanism. Comput. Geotech. 2003, 30, 649-660. [CrossRef]
Vieira, A.; Maranha, J.R. Thermoplastic analysis of a thermoactive pile in a normally consolidated Clay. Int. J. Geomech. 2017, 17, 04016030. [CrossRef]
Mitchell, J.K. Fundamentals of Soil Behavior, 2nd ed.; Wiley Inter Science: New York, NY, USA, 1993; p. 592, ISBN 978-0-471-46302-3.
Laloui, L.; Di Donna, A. Understanding the behaviour of energy geo-structures. In Proceedings of the Institution of Civil Engineers ICE-Civil Engineering; Institution of Civil Engineers: London, UK, 2011; Volume 164, pp. 184-191.
Bourne-Webb, P. Observed response of energy geostructures. In Energy geostructures: Innovation in underground Engineering; Laloui, L., Di Donna, A., Eds.; Wiley: Hoboken, NJ, USA; ISTE: London, UK, 2013; pp. 45-77, ISBN 978-1-84821-572-6.
Cekerevac, C. Thermal Effects on the Mechanical Behaviour of Saturated Clays: An Experimental and Constitutive Study. Ph.D. Thesis, École Polytechnique Federal de Lausanne, Lausanne, Switzerland, 2003.
Di Donna, A.; Laloui, L. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study. Eng. Geol. 2015, 190, 65-76. [CrossRef]
Gens, A. Soil-environment interactions in geotechnical engineering. Géotechnique 2010, 60, 3-74. [CrossRef]
François, B.; Laloui, L. ACMEG-TS: A constitutive model for unsaturated soils under non-isothermal conditions. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1955-1988. [CrossRef]
Bolzon, G.; Schrefler, B. Thermal effects in partially saturated soils: A constitutive model. Int. J. Numer. Anal. Methods Geomech. 2005, 29, 861-877. [CrossRef]
Voight, B.; Faust, C. Frictional heat and strength loss in some rapid landslides. Géotechnique 1982, 32, 43-54. [CrossRef]
Vardoulakis, I. Catastrophic landslides due to frictional heating of the failure plane. Mech. Cohesive-Frict. Mater. 2000, 5, 443-467. [CrossRef]
Laloui, L.; Francois, B. ACMEG-T: Soil thermoplasticity model. J. Eng. Mech. 2009, 135, 932-944. [CrossRef]
Robinet, J.C.; Pasquiou, A.; Jullien, A.; Belanteur, N.; Plas, F. Expériences de laboratoire sur le comportement thermo-hydro-mécanique de matériaux argileux remaniés gonflants et non gonflants. Revue Française de Géotechnique 1997, 81, 53-80. [CrossRef]
Burghignoli, A.; Desideri, A.; Miliziano, S. A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 2000, 37, 764-780. [CrossRef]
Stewart, M.A.; MacCartney, J.S. Centrifuge Modeling of Soil-Structure Interaction in Energy Foundations. J. Geotech. Geoenviron. Eng. 2013, 140. [CrossRef]
Graham, J.; Tanaka, N.; Crilly, T.; Alfaro, M. Modified Cam-Clay modelling of temperature effects in clays. Can. Geotech. J. 2001, 38, 608-621. [CrossRef]
Hueckel, T.; François, B.; Laloui, L. Explaining thermal failure in saturated clays. Géotechnique 2009, 59, 197-212. [CrossRef]
Abuel-Naga, M.; Bergado, T.; Bouazza, A. Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng. Geol. 2007, 89, 144-154. [CrossRef]
Hueckel, T.; Pellegrini, R.; Del Olmo, C. A constitutive study of thermo-elasto-plasticity of deep carbonatic clays. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 549-574. [CrossRef]
Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R. Developments in Modelling of Thermo-Hydro-Geomechanical Behaviour of Boom Clay and Clay-Based Buffer Materials; Report 13365/2 EN; Commission of European Communities: Brussels, Belgium, 1991.
Towhata, I.; Kuntiwattanakul, P.; Seko, I.; Ohishi, K. Volume change of clays induced by heating as observed in consolidation tests. Soils Found. 1993, 33, 170-183. [CrossRef]
Plum, R.L.; Esrig, M.I. Some Temperature Effects on Soil Compressibility and Pore Water Pressure; Highway Research Board Special Report 103; Highway Research Board: Washington, DC, USA, 1969; pp. 231-242.
Demars, K.R.; Charles, R.D. Soil volume changes induced by temperature cycling. Can. Geotech. J. 1982, 19, 188-194. [CrossRef]
Sultan, N.; Delage, P.; Cui, Y.J. Temperature effects on the volume change behavior of Boom clay. Eng. Geol. 2002, 64, 135-145. [CrossRef]
Abuel-Naga, H.M.; Bergado, D.T.; Soralump, S.; Rujicipat, P. Thermal consolidation of soft Bangkok clay. Int. J. Lowl. Technol. 2005, 17, 13-22.
Baldi, G.; Hueckel, T.; Pellegrini, R. Thermal volume changes of the mineral-water system in low-porosity clay soils. Can. Geotech. J. 1988, 25, 807-825. [CrossRef]
Di Donna, A.; Ferrari, A.; Laloui, L. Experimental investigation of the soil-concrete interface: Physical mechanisms, cyclic mobilisation and behaviour at different temperatures. Can. Geotech. J. 2015, 53, 659-672. [CrossRef]
Marques, M.E. Influence of Strain RATE and Temperature in Natural Clays Compaction. Master's Thesis, Université Laval, Laval, QC, Canada, 1996. (In Portuguese)
Boudali, M.; Leroueil, S.; Srinivasa Murthy, B.R. Viscous behaviour of natural clays. In Proceedings of the 13th International Conference Soil Mechanics and Foundation Engineering ICSMFE, New Delhi, India, 5-10 January 1994.
Di Donna, A.; Laloui, L. Soil response under the thermo mechanical conditions imposed by energy geostructures. In Energy Geostructures: Innovation in Underground Engineering; Laloui, L., Di Donna, A., Eds.; Wiley: Hoboken, NJ, USA; ISTE: London, UK, 2013; pp. 45-77, ISBN 978-1-84821-572-6.
Laloui, L.; Cekerevac, C.; Francois, B. Constitutive modelling of the thermo-plastic behaviour of soils. Eur. J. Environ. Civ. Eng. 2005, 9, 635-650.
Kuntiwattanakul, P. Effect of High Temperature on Mechanical Behaviour of Clays. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 1991.
Standard Test Method for Calculating Thermal Diffusivity of Rock and Soil; ASTM D4612-16; ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
Swiss Federal Office of Energy (BFE). Innovative Improvements of Thermal Response Tests; Final Report Project 101-690; BFE: Ittigen, Switzerland, 2008; 68p.
Amis, A.; Bourne-Webb, P.; Amatya, B.; Soga, K.; Davidson, C. The effects of heating and cooling energy piles under working load at Lambeth College. In Proceedings of the 33rd Annual and 11th International DFI Conference, New York, NY, USA, 15-17 October 2008.
Lennon, D.J.; Watt, E.; Suckling, T.P. Energy piles in Scotland. In Proceedings of the 5th International Confernence on Deep Foundations on Bored and Auger Piles, Ghent, Belgium, 20 August 2008; Van Impe, W.F., Van Impe, P., Eds.; Taylor & Francis Group: London, UK, 2009.
Brettman, T.P.E.; Amis, T.; Kapps, M. Thermal conductivity analysis of geothermal energy piles. In Proceedings of the 2010 Geotechnical Challenges in Urban Regeneration Conference, London, UK, 26-28 May 2010.
Abdelaziz, S.L.A.M. Deep Energy Foundations: Geotechnical Challenges and Design Considerations. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, February 2013.
Loveridge, F.; Olgun, C.G.; Brettmann, T.; Powrie, W. The Thermal Behaviour of Three Different Auger Pressure Grouted Piles Used as Heat Exchangers. Geotech. Geol. Eng. 2014, 33, 1-17. [CrossRef]
Baycan, S.; Haberfield, C.; Chapman, G.; Wang, B.; Bouazza, A.; Singh, R.; Barry-Macaulay, D. Field investigation of a geothermal energy pile: Initial observations. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2-6 September 2013.
You, S.; Cheng, X.; Guo, H.; Yao, Z. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy Build. 2014, 79, 23-31. [CrossRef]
Murphy, K.D.; McCartney, J.S.; Henry, K.S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech. 2014, 10, 179-195. [CrossRef]
Yu, K.; Singh, R.; Bouazza, A.; Bui, H. Determining soil thermal conductivity through numerical simulation of a heating test on a heat exchanger pile. Geotech. Geol. Eng. 2015, 33, 239-252. [CrossRef]
Carlsson, S. Energipålar-Termiskt Responstest på Prefabricerad Energipåle i Betong. Master's Thesis, Lund University, Lund, Sweden, 2015.
Ronchi, F.; Salciarini, D.; Cavalagli, N.; Tamagnini, C. Numerical Model of Energy Foundation Behavior: The Prototype of a Geothermal Micro-pile. Procedia Eng. 2016, 158, 326-331. [CrossRef]
Middleton, M.F. A transient method of measuring the thermal properties of rocks. Geophysics 1993, 58, 357-365. [CrossRef]