Veivers, P. C., Musca, A. M., O'Brien, R. W. & Slaytor, M. Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochem. 12, 35-40 (1982).
Miles, P. W. & Peng, Z. Studies on the salivary physiology of plant bugs: Detoxification of phytochemicals by the salivary peroxidase of aphids. J.Insect Physiol. 35, 865-872 (1989).
Zhu-Salzman, K., Bi, J. L. & Liu, T. X. Molecular strategies of plant defense and insect counter-defense. Insect Sci. 12, 3-15 (2005).
Musser, R. O. et al. Herbivory: caterpillar saliva beats plant defences. Nature 416, 599-600 (2002).
Will, T. & van Bel, A. J. E. Induction as well as suppression: How aphid saliva may exert opposite effects on plant defense. Plant Signal. Behav. 3, 427-430 (2008).
Consales, F. et al. Insect oral secretions suppress wound-induced responses in. Arabidopsis. J. Exp. Bot. 63, 727-737 (2011).
Miles, P. Insect secretions in plants. Annu. Rev. Phytopathol. 6, 137-164 (1968).
Miles, P. W. Secretion of two types of saliva by an aphid. Nature 183, 756-756 (1959).
Miles, P. W. Aphid saliva. Biol. Rev. 74, 41-85 (1999).
Will, T., Steckbauer, K., Hardt, M. & van Bel, A. J. Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-Tip milieu. PLoS One 7, e46903 (2012).
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323-329 (2006).
Kaloshian, I. & Walling, L. L. Hemipterans as plant pathogens. Annu. Rev. Phytopathol. 43, 491-521 (2005).
Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814 (2006).
Vallet-Gely, I., Lemaitre, B. & Boccard, F. Bacterial strategies to overcome insect defences. Nat. Rev. Micro. 6, 302-313 (2008).
Hogenhout, S. A. & Bos, J. I. B. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 14, 422-428 (2011).
Walling, L. L. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiol. 146, 859-866 (2008).
De Vos, M. & Jander, G. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ. 32, 1548-1560 (2009).
Tjallingii, W. F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 57, 739-745 (2006).
Mutti, N. S. et al. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Natl. Acad. Sci. USA 105, 9965-9969 (2008).
Bos, J. I. et al. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 6, e1001216 (2010).
Atamian, H. S. et al. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant Microbe. Interact. 26, 67-74 (2013).
Rodriguez, P. A., Stam, R., Warbroek, T. & Bos, J. I. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol. Plant Microbe. Interact. 27, 30-39 (2014).
Delay, B., Mamidala, P. & Wijeratne, A. Transcriptome analysis of the salivary glands of potato leafhopper. Empoasca fabae. J. Insect Physiol. 58, 1626-1634 (2012).
Su, Y. L. et al. Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One 7, e39303 (2012).
Ji, R. et al. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One 8, e79612 (2013).
Matsumoto, Y., Suetsugu, Y., Nakamura, M. & Hattori, M. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). J. Insect Physiol. 71, 170-176 (2014).
Showmaker, K. C. et al. Insight into the salivary gland transcriptome of Lygus lineolaris (Palisot de Beauvois). PLoS One 11, e0147197 (2016).
Harmel, N. et al. Identification of aphid salivary proteins: A proteomic investigation of Myzus persicae. Insect Mol. Biol. 17, 165-174 (2008).
Carolan, J. C. et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. J. Proteome Res. 10, 1505-1518 (2011).
Scheller, H. & Shukle, R. Feeding behavior and transmission of barley yellow dwarf virus by Sitobion avenae on oats. Entomol. Exp. Appl. 40, 189-195 (1986).
Carter, N., Dixon, A. F. G. & Rabbinge, R. Cereal aphid populations: biology, simulation and prediction. (Centre for Agricultural Publishing and Documentation (Pudoc), 1982).
Liu, Y., Wang, W. L., Guo, G. X. & Ji, X. L. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomol. Exp. Appl. 130, 215-221 (2009).
Ma, R., Chen, J. L., Cheng, D. F. & Sun, J. R. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. J. Agr. Food Chem. 58, 2410-2418 (2010).
Rao, S. A., Carolan, J. C. & Wilkinson, T. L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 8, e57413 (2013).
Wohlfarth-Bottermann, K. & Moericke, V. Zur funktionellen Morphologie der Speicheldrüsen von Homopteren. Cell Tissue Res. 52, 346-361 (1960).
Ng, J. C. & Perry, K. L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 5, 505-511 (2004).
Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, (644-652 (2011).
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 11, R14 (2010).
Tatusov, R. L. et al. The COG database: An updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, 480-484 (2008).
Stålbrand, H., Saloheimo, A., Vehmaanperä, J., Henrissat, B. & Penttilä, M. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain. Appl. Environ. Microb. 61, 1090-1097 (1995).
Hayashi, H. & Chino, M. Collection of pure phloem sap from wheat and its chemical composition. Plant Cell Physiol. 27, 1387-1393 (1986).
Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473-488 (2009).
Bennett, R. N. & Wallsgrove, R. M. Secondary metabolites in plant defence mechanisms. New Phytol. 127, 617-633 (1994).
Niemeyer, H. M. et al. Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28, 447-449 (1989).
Ahmad, S. et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157, 317-327 (2011).
Morkunas, I., Mai, V. C. & Gabryś, B. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol. Plantarum 33, 2057-2073 (2011).
Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307 (2007).
Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231-253 (2007).
Nicholson, S. J., Hartson, S. D. & Puterka, G. J. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J. Proteomics 75, 2252-2268 (2012).
Vandermoten, S. et al. Comparative analyses of salivary proteins from three aphid species. Insect Mol. Biol. 23, 67-77 (2014).
Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P. & Kaloshian, I. Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins. J. Proteome Res. 14, 1762-1778 (2015).
Chen, M.-S. et al. Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae. J. Insect Physiol. 54, 1-16 (2008).
Kusnierczyk, A. et al. Towards global understanding of plant defence against aphids-Timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 31, 1097-1115 (2008).
Moloi, M. J. & van der Westhuizen, A. J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 163, 1118-1125 (2006).
Alosi, M. C., Melroy, D. L. & Park, R. B. T The regulation of gelation of phloem exudate from cucurbita fruit by dilution, glutathione, and glutathione reductase. Plant Physiol. 86, 1089-1094 (1988).
Tokuda, G., Saito, H. & Watanabe, H. A digestive beta-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′-and 3′-RACE amplifications with degenerate primers. Insect Biochem. Mol. Biol. 32, 1681-1689 (2002).
Hopke, J., Donath, J., Blechert, S. & Boland, W. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett. 352, 146-150 (1994).
Mattiacci, L., Dicke, M. & Posthumus, M. A. beta-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92, 2036-2040 (1995).
Wang, X. et al. β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Chinese Sci. Bull. 53, 53-57 (2008).
Valenzuela, J. G., Francischetti, I. M., Pham, V. M., Garfield, M. K. & Ribeiro, J. M. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33, 717-732 (2003).
Shukle, R. H., Mittapalli, O., Morton, P. K. & Chen, M. S. Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). J. Insect Physiol. 55, 104-111 (2009).
Francischetti, I. M., Lopes, A. H., Dias, F. A., Pham, V. M. & Ribeiro, J. M. An insight into the sialotranscriptome of the seed-feeding bug. Oncopeltus fasciatus. Insect Biochem. Mol. Biol. 37, 903-910 (2007).
Schäfer, M. et al. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol. 156, 1520-1534 (2011).
Bargmann, B. O. & Munnik, T. The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9, 515-522 (2006).
Wang, X. The role of phospholipase D in signaling cascades. Plant Physiol. 120, 645-652 (1999).
De, T. Z. M., Fernandez-Delmond, I., Niittyla, T., Sanchez, P. & Grant, M. Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol. Plant Microbe Interact. 15, 808-816 (2002).
Young, S. A., Wang, X. & Leach, J. E. Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell 8, 1079-1090 (1996).
Mutti, N. S., Park, Y., Reese, J. C. & Reeck, G. R. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6, 1-7 (2006).
Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J. & Hogenhout, S. A. Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6, e25709 (2011).
Zhang, Y., Fan, J., Sun, J. R. & Chen, J. L. Cloning and RNA interference analysis of the salivary protein C002 gene in Schizaphis graminum. J. Integr. Agr. 14, 698-705 (2015).
Carolan, J. C., Fitzroy, C. I., Ashton, P. D., Douglas, A. E. & Wilkinson, T. L. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9, 2457-2467 (2009).
Corvol, P., Michaud, A., Soubrier, F. & Williams, T. A. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J. Hypertens. Suppl. 13, 3-10 (1995).
Macours, N., Hens, K., Francis, C., De Loof, A. & Huybrechts, R. Molecular evidence for the expression of angiotensin converting enzyme in hemocytes of Locusta migratoria: stimulation by bacterial lipopolysaccharide challenge. J. Insect Physiol. 49, 739-746 (2003).
Lemeire, E., Vanholme, B., Van Leeuwen, T., Van Camp, J. & Smagghe, G. Angiotensin-converting enzyme in Spodoptera littoralis: molecular characterization, expression and activity profile during development. Insect Biochem. Mol. Biol. 38, 166-175 (2008).
Wijffels, G., Gough, J., Muharsini, S., Donaldson, A. & Eisemann, C. Expression of angiotensin-converting enzyme-related carboxydipeptidases in the larvae of four species of fly. Insect Biochem. Mol. Biol. 27, 451-460 (1997).
Wang, W. et al. Angiotensin-converting enzymes modulate aphid-plant interactions. Sci. Rep. 5, 8885 (2015).
Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 13, 17-27 (2003).
Grennan, A. K. The role of trehalose biosynthesis in plants. Plant Physiol. 144, 3-5 (2007).
Iordachescu, M. & Imai, R. Trehalose biosynthesis in response to abiotic stresses. J.Integr. Plant Biol. 50, 1223-1229 (2008).
Almeida, A. M. et al. Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146, 165-176 (2005).
Brodmann, A. et al. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol. Plant Microbe Interact. 15, 693-700 (2002).
Bae, H., Herman, E., Bailey, B., Bae, H. J. & Sicher, R. Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol. Plantarum 125, 114-126 (2005).
Thorpe, P., Cock, P. J. & Bos, J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics 17, 172 (2016).
Missbach, C., Vogel, H., Hansson, B. S. & Grobetae-Wilde, E. Identification of odorant binding proteins and chemosensory proteins in antennal transcriptomes of the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica: Evidence for an independent OBP-OR Origin. Chem. Senses 40, 615-626 (2015).
Dippel, S. et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 15, 1141 (2014).
Gu, S. H. et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics 14, 636 (2013).
Fan, J., Francis, F., Liu, Y., Chen, J. L. & Cheng, D. F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 10, 3056-3069 (2011).
Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687-701 (2002).
Nomura, A., Kawasaki, K., Kubo, T. & Natori, S. Purification and localization ofp10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int. J. Dev. Biol. 36, 391-398 (1992).
Sim, S., Ramirez, J. L. & Dimopoulos, G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 8, e1002631 (2012).
Calvo, E., Mans, B. J., Andersen, J. F. & Ribeiro, J. M. Function and evolution of a mosquito salivary protein family. J. Biol. Chem. 281, 1935-1942 (2006).
Celorio-Mancera Mde, L. et al. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. Insect Biochem. Mol. Bio. 42, 796-805 (2012).
Liu, Y. L., Guo, H., Huang, L. Q., Pelosi, P. & Wang, C. Z. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J. Exp. Biol. 217, 1821-1826 (2014).
Elzinga, D. A., De Vos, M. & Jander, G. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 27, 747-756 (2014).
Lecourieux, D., Ranjeva, R. & Pugin, A. Calcium in plant defence-signalling pathways. New Phytol. 171, 249-269 (2006).
Maffei, M. E., Mithofer, A. & Boland, W. Before gene expression: early events in plant-insect interaction. Trends Plant Sci. 12, 310-316 (2007).
Furch, A. C., Hafke, J. B., Schulz, A. & van Bel, A. J. Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J. Exp. Bot. 58, 2827-2838 (2007).
Will, T., Tjallingii, W. F., Thonnessen, A. & van Bel, A. J. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. USA 104, 10536-10541 (2007).
Will, T., Kornemann, S. R., Furch, A. C., Tjallingii, W. F. & van Bel, A. J. Aphid watery saliva counteracts sieve-Tube occlusion: A universal phenomenon? J. Exp. Biol. 212, 3305-3312 (2009).
Rong, L., Li, Q., Li, S., Tang, L. & Wen, J. De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Mol. Genet. Genomics 291, 575-586 (2016).
Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: A structural motif mediating protein-protein interactions. BioEssays 21, 932-939 (1999).
Jacobsen, S. E., Binkowski, K. A. & Olszewski, N. E. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in. Arabidopsis. Proc. Natl. Acad. Sci. USA 93, 9292-9296 (1996).
Kettles, G. J. & Kaloshian, I. The potato aphid salivary effector Me47 is a glutathione-S-Transferase involved in modifying plant responses to aphid infestation. Front. Plant Sci. 7, 1142 (2016).
Nakajima, Y. & Natori, S. Identification and characterization of an anterior fat body protein in an insect. J. Biochem. 127, 901-908 (2000).
Thomas, W. J., Thireault, C. A., Kimbrel, J. A. & Chang, J. H. Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J. 60, 919-928 (2009).
Upadhyaya, N. M., Ellis, J. G. & Dodds, P. N. A bacterial type III secretion-based delivery system for functional assays of fungal effectors in cereals. Plant-Pathogen Interactions: Methods and Protocols, (eds Paul, B. et al.) 277-290 (Springer, 2014).
Lu, S. Use of the yeast two-hybrid system to identify targets of fungal effectors. Methods Mol. Biol. 835, 165-189 (2012).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotech. 29, 644-652 (2011).
Xue, W. et al. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS One 11, e0161839 (2016).
Zhang, M. et al. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14, 560 (2013).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-Time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408 (2001).