Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Lebon, Georgy ; Université de Liège - ULiège > Relations académiques et scientifiques (Sciences)
Language :
English
Title :
Fluid flow through porous and nanoporous media within the prisme of Extended Thermodynamics: emphasis on the notion of permeability
Alibakhshi MA, Xie Q, Li Y, Duan C (2016) Accurate measurement of liquid transport through nanoscale conduits. Sci Rep 6:24936
Arlemark EJ, Dadzie SK, Reese JM (2010) An extension to the Navier–Stokes equations to incorporate gas molecular collisions with boundaries. J Heat Transfer 132:041006
Cherevko V, Kizilova N (2017) Complex flows of immiscible microfluids and nanofluids with velocity slip boundary conditions. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications, 1st edn. Springer, Heidelberg, pp 207–228
DeGroot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam
Gruener S, Huber P (2011) Imbibition in mesoporous silica: rheological concepts and experiments on water and a liquid crystal. J Phys Condens Matter 23:184109
Gruener S, Wallacher D, Greulich S, Busch M, Huber P (2016) Hydraulic transport across hydrophilic and hydrophobic nanopores: flow experiments with water and n-hexane. Phys Rev E 93:013102
Hus M, Urbic T (2012) Strength of hydrogen bonds of water depends on local environment. J Chem Phys 136:144305
Jou D, Casas-Vàzquez J, Lebon G (2010) Extended irreversible thermodynamics, 4th edn. Springer, Berlin
Lebon G (2014) Heat conduction at micro and macro scales.a review through the prism of extended irreversible thermodynamics. J Nonequilib Thermodyn 39:35–59
Lebon G, Machrafi H (2018) A thermodynamic model of nanofluid viscosity based on a generalized Maxwell-type constitutive equation. J Non-Newton Fluid Mech 253:1–6
Lebon G, Desaive T, Dauby P (2006) A unified extended thermodynamic description of diffusive, thermo-diffusion, suspensions and porous media. J Appl Mech 73:16–20
Lebon G, Machrafi H, Grmela M (2015) An extended irreversible thermodynamic modelling of size-dependent thermal conductivity of spherical nanoparticles dispersed in homogeneous media. Proc R Soc A 471:20150144
Machrafi H, Lebon G (2016a) The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids. Continuum Mech Thermodyn 28:1461–1475
Machrafi H, Lebon G (2016b) General constitutive equations of heat transport at small length and high frequencies with extension to mass and electrical scales transport. Appl Math Lett 22:30–37
Machrafi H, Lebon G, Iorio CS (2016) Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Comp Sc Techn 130:78–87
Manjare M, Ting Wu Y, Yang B, Zhao YD (2014) Hydrophobic catalytic Janus motors: slip boundary condition and enhanced catalytic reaction rate, Appl Phys Lett. 10.1063/1.486395
Priezjev NK (2013) Molecular dynamics simulations of Couette flows with slip boundary conditions. Microfluid Nanofluid 14:225–233
Priezjev NK, Troian SM (2006) Influence of wall rougness on the slip behavior at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J Fluid Mech 554:25–46
Qiao SZ, Bhatia SK, Nicholson D (2004) Study of hexane adsorption in nanoporous MCM-41 Silica. Langmuir 20:389–395
Saeki A, Koizumi Y, Aida T, Seki S (2012) Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res 45:1193–1202
Sellitto A, Cimmelli VA, Jou D (2016) Mesoscopic theories of heat transport in nanosystems. Springer, Berlin
Wu K, Chen Z, Li J, Li X, Xu J, Dong X (2017) Wettability effect on nanoconfined water flow. PNAS 114:3358–3363
Yong X, Zhang LT (2013) Slip in nanoscale shear flow mechanisms of interfacial friction. Microfluid Nanofluid 14:229–308