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Abstract 
The study of fluid flows through porous and nanoporous media is important in many natural 
and industrial situations. One relevant parameter is the permeability of the porous material. An 
original approach is proposed within the prism of Extended Irreversible Thermodynamics. 
More specifically, the system fluid-solid matrix is modelled by a two-component mixture and 
the permeability is obtained after calculating the seepage velocity and comparison with Darcy’s 
law. An explicit analytical expression of the permeability coefficient is proposed and discussed. 
The analysis is restricted to one-dimensional situations and incompressible  fluids. The validity 
of the model is checked by calculating the  flow rate through cylindrical nano pores: comparison 
with experimental data shows a good agreement. 
 

1. Introduction 
 
In nanoporous materials, the permeabibilty of the pores play a fundamental role in the 
derivation of the constitutive relations and the fluid flow characteristics. In the present 
approach, we will focus on the permeability of nanopores and derive its expression in terms of 
some relevant material parameters, like the mean free path of fluid particles, the hydrophobicity 
of the wall (slip-factor) and the pore size. It should also be stressed that  at small characteristic 
lengths, the no-slip boundary condition between fluid and solid is no longer valid because in 
nano materials,  the boundary layer, also called the Knudsen layer,  has a characteristic length 
comparable to the dimensions of the systems and therefore its influence will be felt everywhere 
inside the whole system. The situation is comparable to that observed in rarefied gases and 
microfluidics, where it is currently admitted that slipping is important at the boundaries. We 
will here adhere to this point of view and the dependence of permeability with respect to this 
parameter coupled to  the pore size will be the main subject of this work. 
 
Our approach is grounded on Extended Irreversible Thermodynamics (EIT) (e.g.  Lebon et al. 
(2008), Jou et al. (2010)), initiated some decades ago. It consists essentially in upgrading the 
thermodynamic fluxes, like the heat,  mass  and momentum fluxes, to the status of independent 
variables at the same level as the  usual state variables, as temperature,  mass and momentum. 
EIT has proven to be useful in problems involving short times and small length scales, leading 
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to new developments, more particularly for applications in nanosystems, e.g. Lebon (2014), 
Lebon et al. (2015), Machrafi and Lebon (2016a), Machrafi et al. (2016b).  
 
In the present paper, porous medium will be modelled as a two phase system, constituting in a  
(incompressible) fluid flowing through  nano (rigid) elements. Following the lines of thought 
of EIT (see section 2), one is led to a momentum equation for the fluid flow generalizing 
Darcy’s  constitutive law written as  
 

𝒖 =  − ∇𝑝,          (1) 

 
the vector 𝒖 is a characteristic velocity (the so-called seepage or Darcy velocity identified as 
the mean volumetric flow rate per unit area), 𝜇 is the dynamic viscosity of the fluid, 𝐾  the 

effective permeability and ∇𝑝 the pressure gradient along the fluid flow. Bold case letters will 
be used throughout this work to denote vectors. It is important to note that the use of Darcy’s 
law is limited to macroscopic pores where the influence of the wall is negligible and low 
Reynolds flows. 
 
Our objective is to determine the effective permeability coefficient of nanopores in terms of 
relevant characteristics of the system as the mean free path of the fluid particles and the slippage 
length at the walls. Two particular nanopore’s configurations, namely cylindrical and 
parallelepiped pores will be investigated. 
 
The methodology developed in the forthcoming consists in calculating the average velocity 
flow, or flow rate, in the above mentioned geometrical pore configurations, as a function of the 
constant pressure difference along the symmetry axis. By comparison with Darcy’s equation 
(1), one is then able to propose an expression of the effective permeability in terms of the 
parameters introduced in the model. To assess the validity of the model, overall flow rate versus 
radius in a cylindrical nanopore is calculated in the case of water and n-hexane  and compared 
with experimental data  
 
The paper is organized as follows. After a brief review of EIT, the basic momentum equation 
underlying the present work is derived in Section 2. It is applied in Section 3 to determine the 
permeability in the case of cylindrical and parallelepiped nanopores. Several asymptotic values 
are discussed. A numerical analysis is presented in Section 4, exhibiting the behaviour of the 
effective permeability as a function of the dimensions of the nanopores. The validity of the 
model is assessed in Section 5 by calculating the flow rate through Vycor glass of water and n-
hexane, respectively, and comparing with experimental data. Conclusions are drawn in section 
6.  
 
2. The model 
 
Fluid motion through a porous medium of porosity 𝜙 (the ratio of the volume occupied  by the 
pores and the total volume) is modelled as a binary system constituted by a viscous 
incompressible fluid of mass density 𝜌  moving with a velocity 𝒗𝒇 in a non-deformable solid 
of mass density 𝜌  moving at velocity 𝒗 . The diffusion flux of the fluid is defined as  
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𝑱 = 𝜙𝜌 𝒗 − 𝒗 ,                         (2) 
 
with 𝒗 the barycentric velocity, given by  
 
𝜌𝒗 = 𝜙𝜌 𝒗 + (1 − 𝜙)𝜌 𝒗 ,           (3)
            

  
wherein the total mass density 𝜌 is 𝜌 = 𝜙𝜌 + (1 − 𝜙)𝜌 .  
 
At this point, it may be interesting to recall briefly the ingredients of EIT.  
 
2.1 Brief review of Extended Irreversible Thermodynamics 
 
For pedagogical purpose, let us study the simple problem of matter diffusion in a two-
component mixture of mass fractions 𝑐  and 𝑐 , the temperature 𝑇 is assumed to be uniform. 
The main idea underlying EIT is to elevate the thermodynamic fluxes, here the diffusion fluxes 
𝑱  and 𝑱  to the status of independent variables, at the same level as the classical concentration 
varaiables. According to the definition of the barycentric velocity, it is directly seen that 𝑱 +
𝑱 = 0. Moreover, since 𝑐 + 𝑐 = 1, it  follows that the set of independent variables is given 
by 𝑐  and 𝐽 . Assuming that the entropy 𝑠 per unit mass of the system depends on both kinds of 
variables, one has 𝑠 =  𝑠(𝑐 , 𝑱 ) or, in terms of the material time derivative 
 

= +
𝑱

∙
𝑱

= − − 𝛼𝑱 ∙
𝑱

,       (4) 

 

wherein use has been made of  the classical definition  = − , with 𝜂 designating the 

difference 𝜂 − 𝜂  between the chemical potentials of both constituents and wherein it has been 

assumed that 
𝑱

 is a linear function of 𝑱  with 𝛼 a phenomenological coefficient to be positive 

to guarantee that 𝑠 is maximum at equilibrium (Jou et al 2010). Entropy is also assumed to obey 
a time evolution equation of the general form  
 

𝜌 = −∇ ∙ 𝑱 + 𝜎 ,  with 𝜎 ≥ 0.                                                     (5)

           
𝜎  is the rate of entropy production imposed to be positive definite in virtue of the second law 
of themodynamics and 𝑱 is the entropy flux classically given by  
 
𝑱 = − 𝑱 .               (6) 

 

This result (5) is easily obtained by setting 𝛼 = 0 in (4) and substituting  by the mass 

conservation law  
 

𝜌 = −∇ ∙ 𝑱 .              (7) 
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By comparison with the time evolution (5) of 𝑠, it is then direcly checked that expression of 𝑱  
is given by (6) whereas the entropy production is (e.g. Degroot and Mazur (1952), Lebon et al 
(2008)) 
 

𝜎 = −𝑱 ∙
∇

≥ 0.             (8) 

 
However, in presence of non-localities which are especially relevant in micro and nanosystems, 
it is rather natural to admit that 𝑱  depends, in addition, on the gradients of the diffusion flux  
𝑱 , for example,  
 
𝑱 = − 𝑱 + 𝛾𝑱 ∙ ∇𝑱 ,            (9) 

 
wherein 𝛾 is a coefficient to be determined later on. The final task consists in deriving the time 
evolution equation of the state variables. The one corresponding to the classical mass fraction 
variable is given by (7), while the time evolution equation of the diffusion flux is obtained by 
substituting  (4) and (9) in (5). The corresponding entropy production is now given by 
 

𝜎 = 𝑱 ∙ −
∇

− 𝛼
𝑱

+  𝛾∇ 𝑱 + 𝛾∇𝑱 ⨂∇𝑱 ≥ 0,       (10) 

 
with ⊗ standing for the tensorial product. The simplest way guaranteeing the positiveness of 
relation (10) is to assume that there exits a linear relation between the flux 𝑱  and its conjugated 
force represented by the terms between parenthesis and that 𝛾 is a positive factor. To 
summarize, one is led to  
 

𝑱 = −
∇

− 𝛼
𝑱

+  𝛾∇ 𝑱 ,   𝛾 ≥ 0,         (11) 

 
with 𝜒 a positive phenomenological coefficient in order to meet the condition 𝜎 ≥ 0. 
Expressing the chemical potential 𝜂 in terms of 𝑐  leading to ∇𝜂 = (𝜕𝜂/𝜕𝑐 )∇𝑐  and 
introducing the notations 
 

= 𝜏,   = 𝑙 ,  = 𝜌𝐷,        (12) 

 
expression (11) takes the more familiar form  
 

𝜏
𝑱

+ 𝑱 = −𝜌𝐷∇𝑐 + ℓ²∇ 𝑱 ,                     (13) 

 
wherein 𝜏 has the dimension of time and can be interpreted as the time relaxation of the 
diffusion flux, ℓ has the dimension of length and can be seen as the mean free path of the 
component. Finally, letting 𝜏 and ℓ tending to zero, relation (13) reduces to Fick’s law  
  
𝑱 = −𝜌𝐷∇𝑐 ,            (14) 
 
with 𝐷 standing for the classical diffusion coefficient. 
In the forthcoming, we will identify component 1 with the fluid and restrict the analysis to small 

velocities so that the material time derivative = + 𝒗 ∙ 𝛻 can be substituted by the partial 
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time derivative 𝜕  and all non-linear terms in the velocity (as 𝒗 ∙ ∇𝒗) can be neglected.  
Desigating the knematic viscosity, Accordingly, the basic general time evolution of the  
diffusion flux of the fluid will read as  
 
𝜏𝜕 𝑱 + 𝑱 = −𝜌𝐷∇𝑐 + ℓ²∇ 𝑱,          (15) 
 
with 𝑱 given by expression (2).         
 
 
2.2 The basic momentum equation 
 
Relation (15) is the keystone of the future developments. Substituting the definition (2) of the 
mass flux in (15) and taking into account the incompressibility of the fluid, one is led to  
      
𝜏𝜙𝜌 𝜕 𝒗 − 𝒗 = −𝜌𝐷∇𝑐−𝜌 𝜙 𝒗 − 𝒗 + ℓ²∇ 𝜌 𝜙 𝒗 − 𝒗 .                                           (16) 
 
To eliminate the term in 𝜕 𝑣, we make use of the momentum equation 
 
𝜌𝜕 𝒗 = −∇𝑝 + ∇ ∙ 𝝈,                       (17) 
 
wherein 𝑝 is the hydrostatic pressure, 𝝈 the stress tensor given by Newton’s constitutive law 
𝝈 = 𝜇∇𝒗 as the fluid is assumed to be Newtonian, 𝜇 designating the  kinematic viscosity. In 
(17), external body forces are omitted. The system under study consisting in a binary mixture 
of fluid and solid, it is justified to formulate the momentum equation in terms of the barycentric 
velocity  rather than the fluid velocity. In the particular case that the solid is at rest (𝒗 = 0), 𝒗 

is directly related to 𝒗  with 𝒗 = 𝜙 𝒗  in virtue of (3). Using this result and the momentum 

equation to eliminate  𝒗 and  𝜕 𝒗 in (16), one obtains the following time evolution equation of 
the fluid flow through the pores,  
 

𝜌𝜕 𝒗 = −∇𝑝 + 𝜇𝜙 ∇ 𝒗 −
( )

𝒗 + ℓ²
( )

∇ 𝒗 ,      (18)

  
In (18), the term involving diffusion has been omitted as it is generally negligible. In view of 
future developments, let us introduce the so-called absolute permeability, 𝐾 , of the porous 
medium, defined through  
 

≡ .                 (19) 

 
This result stems from comparison of a steady-state (𝜕 𝒗 = 0) and local (∇ 𝒗 = 0) version 
of Eq. (18) with Darcy’s law (Eq. (1) after that 𝒖 has been identified as 𝒖 = 𝒗 𝜙. Note that the 
ratio of the absolute permeability and the viscosity depends essentially on the relative volume 
and mass fraction of both constituents. Under steady conditions and in terms of 𝐾 , expression 
(18) reads as  
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−∇𝑝 − 𝒗 + 𝜇𝜙 +
ℓ²

∇ 𝒗 = 0 .                                                                     (20)

   
Relation (20) is the basic equation of our work expressing the velocity field through nanopores 
under steady conditions. The first term at the left hand side is the classical pressure gradient 
term, the second represents an extra contribution to the momentum balance due to porosity, the 
third term is associated to the fluid viscosity and the last one is a consequence of the nano-
properties of the pores. By omitting this last term (ℓ²/𝐿 ≪ 1, with 𝐿  a reference length), 
we obtain a Brinkman-like equation. On the other hand, by letting in (20) 𝐾  tend to infinity, 
one finds back Navier-Stokes relation. Finally, omitting non-local contribution (ℓ²/𝐿 ≪ 1) 
and assuming that 𝐾 /𝐿 ≪ 1, it is found that  
 

𝜙𝒗 = − ∇𝑝,          (21) 

 
and, after substituting in (21) 𝒗  by its mean value 〈𝒗 〉 as defined below, one finds back  
Darcy’s law (1). 
 
The particular cases discussed above show the flexibility of the formalism, which is valid for 
both porous and non-porous systems and at both nano- and macroscales. It is worth stressing 
that, in this work, Darcy’s relation is introduced as a particular case of the momentum equation 
rather than a phenomenological relation, like Fourier’s, Fick’s or Ohm’s laws. 
At nano-length scales, the boundary layer between the fluid and the solid’s wall has a 
characteristic length comparable to the pore dimensions and therefore its influence will be felt 
in the whole material. The usual no-slip boundary condition is no longer valid and slip flows 
may become relevant; the situation is similar to that observed in microfluidics and in rarefied 
gas dynamics wherein slippery conditions at the walls are important. 
Our objective in the forthcoming is to determine the effective permeability coefficient in terms 
of relevant characteristics of the system as the mean free path of the fluid particles, the slippage 
length at the walls and the size of the nanopores. This is achieved by calculating the fluid 
velocity field as a function of the imposed pressure gradient and by identifying the effective 
permeability 𝐾  by strict comparison with Darcy’s expression (21), i.e. as minus the 

coefficient of the factor multiplying 
∇

 
. Two particular configurations will be considered, 

namely fluid flow through porous nanoducts of circular and rectangular cross sections. 
 
3. Effective permeability 
 
In the following, the fluid velocity is supposed to remain constant in the flow direction (say the 
𝑥-direction) due to the assumption that the pore length 𝐿 is much larger than the lateral 
dimensions normal to the fluid flow (represented by the aforementioned reference length 𝐿 ). 
For a circular nanoduct of radius 𝑅, this means that 𝐿 ≫ 𝑅. For the parallelepiped pore, it is 
assumed that perpendicularly to the flow direction, a selected dimension, say the width 𝑊 
(defined in the 𝑦-direction), is much larger than the other one, say the height 𝐻 (defined in the 
𝑧-direction), so that 𝐿 ≫ 𝑊 ≫ 𝐻. This amounts to consider a flow between two parallel plates 
separated by a distance H. Introducing relevant boundary conditions, we will in the next 
subsections determine the one-dimensional fluid velocity profile as a function of the 
perpendicular coordinates (𝒗 ⇒ 𝑣 (𝑟) or 𝑣 (𝑧)), respectively, 𝑟 designating the radial 
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coordinate for the cylindrical pores and 𝑧 the distance measured along the height of the 
parallelepiped pores. The corresponding average velocities are respectively defined by  
 

〈𝑣 〉 = ∫ 2𝜋𝑟𝑣 (𝑟)𝑑𝑟,         (22) 

 
for the circular pores, and 
 

〈𝑣 〉 = ∫ ∫ 𝑣 (𝑧)𝑑𝑦𝑑𝑧 = ∫ 𝑣 (𝑧)𝑑𝑧,      (23) 

 
for the parallelepiped pores. The corresponding flow rates are 𝑄 = 𝜋𝑅 〈𝑣 〉 and 𝑄 =

𝑊𝐻〈𝑣 〉, respectively. In the two next sub sections, we will determine the effective permeability 
of nanopores with circular and rectangular cross sections, respectively. Since the purpose of the 
present work is to obtain an analytic expression of the effective permeability, we have restricted 
our approach to a one-dimensional configuration. 
 
3.1 Nano pores with circular cross sections  
 
Assuming that the velocity profile only changes in the radial direction and remains uniform in 
the axial direction, Eq. (20) becomes 
 

𝑣 − 𝜇𝜙 +
ℓ²

 
𝑟 = −  ,       (24) 

 
wherein the absolute permeability  𝐾   of the cylindrical pore is given by (see appendix A for 
more details) 
     
𝐾 = 𝑅 /8.           (25) 
 
It should be noted that 𝐾  is implicitly dependent on the porosity, because the pore size 
represents actually a mean hydraulic radius, which in practice is a function of the characteristics 
of the porous material. There is therefore no contradiction between relations (25) and (19).  
It is well recognized that in nanopores, the no-slip condition is no longer valid. Here, we will 
substitute it by the following second-order slip boundary condition at 𝑟 = 𝑅 (e.g Priezjev and  
Troian (2006), Priezjev (2013), Yong and Zhang (2013), Manjare et al. (2014), Cherevko and 
Kizilov (2017)). Similarly, slip boundary conditions were also introduced by Lebon (2014) and 
Sellitto et al (2016) in their study of heat transport at nanoscales. The boundary condition is 
 

𝑣 (𝑅) = −𝐶 ℓ | − 𝛽𝐶 ℓ 𝑟 | ,      (26) 

 
wherein ℓ  is the slipping length whereas  𝐶  and 𝐶  are coefficients, which are often taken to 
be constant. In reality, they are dependent on the system’s geometry and fluid/porous matrix 
properties, as some studies reveal (Gruener and Huber (2011), Gruener et al (2016)). 
These coefficients, called “slip correction factors” (SCF), are determined in Appendix B as a 
function of the material properties and the system’s geometry. The quantity 𝛽 is introduced in 
order to consider simultaneously both first-order (𝛽 ≡ 0) and second-order slip boundary 
conditions (𝛽 ≡ 1). At 𝑟 = 0, the center of the pore, the velocity is assumed to be maximum, 
meaning that 
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| = 0.           (27)

          
Let a constant pressure difference ∆𝑝 (= 𝑝 (𝑥 = 𝐿) −  𝑝(𝑥 = 0)) act along the symmetry axis, 

i.e. ≡ −
∆

 and introduce two non-dimensional numbers 𝐵 ≡ ℓ /𝑅 and 𝐾𝑛 ≡
ℓ
. The first 

number, 𝐵 , stands for the non-dimensional slippage friction factor and the second one, 𝐾𝑛, is 
the Knudsen number associated to the molecular mean free path. We are now in able to solve 
equation (24) for 𝑣 (𝑟), the result is 
 
 

𝑣 (𝑟) =
∆

⎝

⎜
⎛

1 −

 ℱ ,
 

 ℱ ,  ℱ ,

⎠

⎟
⎞

, (28)  

  
 
 
where ℱ  is the confluent regularized hypergeometric function. Taking the mean value of 𝑣  
and multiplying by 𝜙, we obtain the expression of the seepage velocity 𝑢. We are now in 
position to compare our result with Darcy’s law (1) and to derive the corresponding expression 
of the effective permeability, which is given by  
  
 

𝐾 =
²

⎝

⎜
⎛

1 −

 ℱ ,

 ℱ ,  ℱ ,

⎠

⎟
⎞

.  (29) 

 
wherein 𝐾  has been substituted by the result (25). The porosity dependence of the effective 
permeability results from the presence of the terms 𝐾  (here 𝑅 /8) and 𝜌 (see under Eq. (3)). It 
follows from relation (29) that the effective permeability is a function of the fluid and solid 
densities, the porosity, the pore radius, the fluid molecules interactions via the Knudsen number 
𝐾𝑛 and the slip of molecules through the non-dimensional number 𝐵 .  
It may be of interest for application purposes to derive particular expressions of the effective 
permeability in some asymptotic cases say: i) important (𝐾𝑛 ≫ 1) and negligible non-local 
effects (𝐾𝑛 ≪ 1) respectively, ii) first-, second-order or no-slip conditions or iii) high or low 
absolute permeability’s (𝐾 /𝐿 ≫ 1 or ≪ 1) and combinations thereof. Three particular 
situations are examined in Table 1. The particular situations corresponding to absence of 
slipping   (𝐵 → 0) or second-order contribution (𝛽 → 0) can easily be derived from Table 1 
and has therefore not been explicitly considered. For the sake of clarity, the various types of 
models associated to the above particular asymptotic cases are explicitly mentioned. 
 
Table 1. Asymptotic expressions of Eq. (29) with second-order slip conditions 
Limits  Equation  Model 𝐾  with 𝐵 ≡ ℓ /𝑅 and 𝐾𝑛 ≡ ℓ/𝑅 
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𝐾 /𝐿 ≪ 1, 
𝐾𝑛 ≫ 1 

(29A) Darcy model for 
nanopores 

𝔅 , 𝔅 , 𝔅 ,

𝔅 , 𝔅 ,
  

𝐾 /𝐿 ≪ 1, 
𝐾𝑛 ≪ 1 

(29B) Darcy model for 
macropores 

  

𝐾 /𝐿 =

𝑂(1),  
𝐾𝑛 ≪ 1  

(29C) Brinkman-like 
model for porous 
systems 

1 −

 ℱ ,

 ℱ ,  ℱ ,

  

 
In Table 1, 𝔅 represents the Bessel-I function.  
 
3.2 Nano pores with rectangular cross sections 
 
Let us consider a one-dimensional flow along the x-axis in a rectangular duct of lateral 
dimension 𝑊 ≫ 𝐻, with 𝐻 designating the thickness, and assume a steady-state situation. 
Under steady conditions and absence of external forces, the momentum equation (20) reads as 
            
 

𝑣 − 𝜇𝜙 +
ℓ²

= − ,        (30) 

 
with the absolute permeability given by (see Appendix A for  details)  
 
𝐾 = 𝐻²/12.                                 (31) 
 
We follow the same procedure as in the previous sub-section with the maximum fluid velocity  
at half the height of the channel, i.e. 
 

| / = 0.           (32) 

 
The boundary conditions are          
  

at 𝑧 = 𝐻/2:     = 0 (maximum velocity),       (33) 

at 𝑧 = 0: 𝑣 = 𝐶 ℓ − 𝛽𝐶 ℓ ,        (34)

   
with 𝐶  and 𝐶  determined in Appendix B. Calculating the average fluid velocity via Eq. (23) 
and using Eq. (1), we are able to identify the effective permeability as 
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𝐾 =
²

⎝

⎜⎜
⎛

1 −

⎠

⎟⎟
⎞

. (35)

  
 
The corresponding expressions in the same asymptotic cases as for Eq. (29) are shown in Table 
2. Here, it is assumed that 𝑊 ≫ 𝐻 (the case 𝑊 ≪ 𝐻 leads of course to the same result, replacing 
𝐻 by 𝑊). For 𝑊 of the same order of magnitude as 𝐻, 𝑊 = 𝑂(𝐻), Eq. (35) and the asymptotic 

derivations in Table 2 remain applicable by replacing 𝐻 by 𝐻 ≡ . 

 
Table 2. Asymptotic evaluations for Eq. (35) with second-order slip conditions. 
Limits  Equation Model 𝐾 with 𝐵 ≡ ℓ /𝐻 and 𝐾𝑛 ≡ ℓ/𝐻 

𝐾 /𝐿 ≪ 1, 
𝐾𝑛 ≫ 1 

(35A) Darcy model 
for nanopores 

²
1 −

 

 
  

𝐾 /𝐿 ≪ 1, 
𝐾𝑛 ≪ 1 

(35B) Darcy model 
for macropores 

²
  

𝐾 /𝐿 = 𝑂(1),  
𝐾𝑛 ≪ 1  

(35C) Brinkman-like 
model for 
porous system 

1 −

   

 
Moreover, in view of application to experiments, we need not only the expression of the 
effective permeability, but also that of the effective viscosity, since non-local effects influence  
the viscosity as well (e.g. Lebon et al (2015), Lebon and Machrafi (2018)). Therefore, instead 
of Eq. (1), we will use the result 
 

𝒖 =  − ∇𝑝,          (36) 

 
with the expression of the effective viscosity 𝜇  derived in Appendix C and given by 
 

𝜇 =
( )

− 1 .        (37) 

 
4. Numerical results 
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Before comparing our model to experimental data in the next section, it is interesting to have a 
general insight on the behaviour of the permeability in terms of the size of the system and the 
parameters ℓ and ℓ . Our objective is to search for   mathematical coherency  and asymptotic 
behaviours. Influence of 𝑅 (or 𝐻), ℓ and ℓ  on the effective permeability will be investigated 
via the dimensionless numbers 𝐾𝑛 and 𝐵 . Since the influence of 𝜙 has already been studied 
intensively in the past, it will be  disregarded here and will be imposed a priori equal to  𝜙 =

0.5. For the sake of concision, we introduce  the notion of relative effective permeability 
obtained by dividing the effective permeability by the absolute one (𝐾 ): 
 

𝐾 =  .           (38) 

 
This parameter is typically a measure of  non-locality and fluid slip at the wall. In Tables 3 and 
4 are given the asymptotic values of 𝐾  as a function of 𝐾𝑛 and 𝐵  for the cylindrical and 

rectangular pores, respectively. We examine successively the asymptotic cases 𝐾𝑛 → 0, 
(macroscopic scale) and 𝐾𝑛 → ∞ (nano scale), coupled with 𝐵 → 0 (no slip) and 𝐵 → ∞ (full 
slip), respectively. The value 𝐾𝑛 → 0, disregarding slip (𝐵 → 0), corresponds mathematically 
to 𝑅 → ∞ or 𝐻 → ∞, whereas  𝐾𝑛 → ∞ and 𝐵 → ∞ amounts at taking 𝑅 → 0 or H→ 0. The 

limiting values 𝐵 = −1 (cylinder) or 𝐵 = −  (parallepiped) describe fluids asymptotically at 

rest. 
 
Table 3: Asymptotic values of 𝐾 (𝑅)   

Equation 𝐾𝑛 → 0 
𝐵 → 0 

𝐾𝑛 → ∞ 
𝐵 → 0 

𝐾𝑛 → 0 
𝐵 → ∞ 

𝐾𝑛 → ∞ 
𝐵 → ∞ 

Equivalent 
limits 

𝑅 → ∞ ℓ ≪ 𝑅 ≪ ℓ  ℓ ≫ 𝑅 ≫ ℓ  𝑅 → 0 

(29) 
1 −

 ℱ , /

 ℱ , /
  0 1 𝐶 𝐵

𝐾𝑛 + 𝐶 𝐵
 

(29A) 1  0 1 𝐶 𝐵

𝐾𝑛 + 𝐶 𝐵
 

(29B) 1  1 1 1 
(29C) 

1 −
 ℱ , /

 ℱ , /
  1 −

 ℱ , /

 ℱ , /
   1  1 

 
Table 4: Asymptotic values of 𝐾 (𝐻) 

Equation 𝐾𝑛 → 0 
𝐵 → 0 

𝐾𝑛 → ∞ 
𝐵 → 0 

𝐾𝑛 → 0 
𝐵 → ∞ 

𝐾𝑛 → ∞ 
𝐵 → ∞ 

Equivalent 
limits 

𝐻 → ∞ ℓ ≪ 𝐻 ≪ ℓ  ℓ ≫ 𝐻
≫ ℓ  

𝐻 → 0 

(35) 
1 − 𝑇𝑎𝑛ℎ   

0 1 𝐶 𝐵

𝐾𝑛 + 𝐶 𝐵
 

(35A) 1  0 1 𝐶 𝐵

𝐾𝑛 + 𝐶 𝐵
 

(35B) 1  1 1 1 
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(35C) 
1 − 𝑇𝑎𝑛ℎ   1 − 𝑇𝑎𝑛ℎ    

1  1 

 
The second-order slip coefficient 𝐶  appearing in these tables (fourth column) has  been 
calculated following the methodology proposed in Appendix B. In order to apprehend the 
behaviour of the permeability, the lengths ℓ and ℓ  are selected as:  ℓ = 1 nm and ℓ = 4 nm 

(so that 𝐵 ≠ 0) together with =  (which amounts to 𝜌 = 3𝜌  and 𝜙 = 0.5). In Figs. 1 and 

2 are plotted the permeability 𝐾  as a function of the dimensions 𝑅 (cylinder) and 𝐻 
(parallepiped). 
 

 
Figure 1: 𝐾 (𝑅) for Eqs. (29)-(29C), for ℓ = 1 nm, ℓ = 4 nm, 𝜌 = 3𝜌  and 𝜙 = 0.5.  

Our model,  Darcy standard,   Darcy non-local,  Brinkmann. 
 

 
Figure 2: 𝐾 (𝐻) for Eqs. (35)-(35C), for ℓ = 1 nm, ℓ = 4 nm, 𝜌 = 3𝜌  and 𝜙 = 0.5. 

Our model,  Darcy standard,   Darcy non-local,  Brinkmann. 
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Some comments are in form. First, we observe a similar behaviour for both configurations. 
Moreover, the values of 𝐾  remain unchanged, when 𝑅, or 𝐻, take values smaller or larger 

than those given in Figs. 1 and 2. Let us focus on the limiting values 𝑅(𝐻) → 0 and 𝑅(𝐻) →

∞. At 𝑅 → ∞, one has 𝐾 = 1 −
 ℱ [ , ]

 ℱ [ , ]
≈ 0.57 and  𝐾  = 1 −

√

√
≈ 0.60 for the 

cylindrical and parallelepiped pores, respectively. For 𝑅 → 0, it is found that 𝐾 =
ℓ

ℓ ℓ
≈

0.67 with 𝐶 =  for the cylindrical pores and 
ℓ

ℓ ℓ
≈ 0.84 with 𝐶 =  for the parallelepiped 

pores.  

Second, note that for 𝑅 → ∞ and 𝐻 → ∞, the standard and  non-local Darcy models (black dot-
dashed and green dashed curves), tend to the asymptotic value of 1, whilst our model  (black 
solid curves) and Brinkman’s one  (red dotted curves)  lead to  the aforementioned asymptotic 
values. For 𝑅 → 0 and 𝐻 → 0, one finds back the same asymptotic values for the present and 
the non-local Darcy models, whereas the Brinkmann and standard Darcy’s models tend  
asymptotically to 1. Figs. 1 and 2 are only drawn for values of 𝑅 and 𝐻 ranging from 10  to 
10 , because outside this domain, the variations of 𝐾  are minute.  

Third, our model presents typically  a maximum at a characteristic length which is neither the 
case for Brinkmann’s nor non-local Darcy’s models.  

The reason why our model does not tend to unity at small sizes is due to non-local effects, while 
slipping  effects prevent  𝐾  to go to zero (see columns 4 and 5 of Tables 3 and 4). These 

results are confirmed by the asymptotic value of 
²

, which is non-zero in presence of 

slipping  and equal to 1 in absence of non-local effects. Note, however, that, in contrast with 
the results predicted by Darcy’s model, 𝐾   does not tend to unity at large sizes. This reduction 
of permeability can easily be understood. Indeed, Darcy’s approach ignores viscous effects, 
which, at large sizes, are governed by parabolic-like velocity profiles, whose value in the mean 
is lower than that of plug-like flows in Darcy’s models. By increasing the dimension, either 𝑅 
or 𝐻, the viscous drag becomes dominant with respect to the slipping effects, resulting in a 
lower permeability. 

   

5 Experimental case study: flow rate in nanoporous cylinders 
 
In this subsection, our model will be validated against experimental results. In that respect, it is 
convenient to define an overall flow rate (not the flow rate through a single pore) through the 

porous medium, i.e. 𝑄 = , with 𝑢 designating the seepage velocity, 𝑇  the porous medium 

tortuosity and 𝐴 = 𝜋ℛ , with ℛ the radius of the porous material as a whole (for  the cylindrical 
configuration). Making use of Eq. (1) for 𝑢, one is led to  
 

𝑄 = 𝜋ℛ ,           (39)
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with 𝐾  given by Eq. (29) and 𝜇  by Eq. (37). The values of 𝑄  derived from  our model 
are compared with experimental data (Gruener and Huber (2011), Gruener et al (2016)) for 
water and n-hexane flowing through nanoporous Vycor glass. Table 5 gives the material 
properties for this case study.  
 
Table 5: Material properties of water, n-hexane and Vycor glass 
Material properties Water n-Hexane 
ℓ [nm] 0.3 0.6 
ℓ  [nm] -0.7 -0.5 
𝜌  [kg/m3] 1000 655 
𝜇  at 25 °C [Pas] 8.9*10-4 3.0*10-4 
 Vycor glass 
𝜌  [kg/m3] 2650 
𝜙 [-] 0.32 
ℛ [m] 3∙10-3 

𝐿 [m] 4∙10-3 

𝑇  [-] 3.6 
𝑅 [nm] 3.4 and 5 

 
In the literature (e.g. Arlemark et al. (2010), Saeki et al. (2012) and Hus and Urbic (2012)), the 
mean free path in fluids is often identified with the inter-molecular distance of the molecules. 
It is worth to stress that for liquids, the intermolecular distance is often of the same order of 
magnitude as the molecule size, suggesting that the molecule size is a pertinent approximation. 
This motivated our choice for water and n-hexane in Table 5. The slip lengths are obtained from 
experimental measurements in stagnant fluid layers in nanoscale conduits for water (Alibakhshi 
(2016)) and n-hexane (Qiao et al (2016)) in contact with silica channel walls. The values found 
here are of the same order of magnitude as the ones calculated a posteriori  by Gruener et al  
(2016). The other material properties for the nanoporous system are taken from the papers by  
Gruener and Huber (2011) and Gruener et al (2016). 
In Figs. 3 and 4 are represented the volumetric flows 𝑄 of water and n- hexane, respectively, 
as a function of the external applied  pressure drop. For the sake of comparison, we have also 
plotted  the values obtained from Darcy’s model. 
Comparison between theoretical and experimental results shows a satisfactory agreement. It is 
worth to stress that the model expressed by Eq. (29) predicts much better results than Darcy’s 
law.  
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Fig. 3: Flow rate of water (in 𝑛𝑙/𝑠) through nanoporous Vycor glass with nanopores of 
dimensions (a) 3.4 nm and (b) 5 nm and porosity of 0.32. Solid cicles represent experimental 
data, the solid line corresponds to our model Eq. (29), whereas the red dotted line refers to 
Darcy’s law.  
 

  
Fig. 4: Flow rate of n-hexane through nanoporous Vycor glass with nanopores of dimensions 
(a) 3.4 nm and (b) 5 nm and porosity of 0.32. Solid cicles represent experimental data, the solid 
line corresponds to our model Eq. (29), and the red dotted line to Darcy’s law. 
 
 
6. Conclusions 
 
Fluid flow through nanoporous media is strongly influenced by non-local effects, pore size and 
slip-behaviours at the boundaries. These properties are reflected in expressions (29) and (35) of 
the permeability and relation (37) of the viscosity. The viscosity takes into account the nano 
size-effect, while the permeability depends, besides the size effect, also on the boundary slip 
and porosity. The permeability is obtained by a strict comparison of the velocity field with the 
one obtained from Darcy’s law. Although, it is the ratio of the permeability and the viscosity 
that plays an important role rather than each individual coefficient, the central part of this work 
is focused on the determination of the effective permeability. The latter is given an explicit 
expression in terms of the above mentioned parameters. Its behaviour as a function of the 
dimensions of the system has been calculated in the case of nanopores with cyllindrical and 
parallepiped cross sections, respectively. As far as the asymptotic behaviour of the effective 
permeability is concerned, one finds back the same trends as predicted by previous models. 
Moreover, it is observed that the status of Darcy’s law is comparable to that of Carnot’s law in 
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classical thermodynamics consisting in an ideal theoretical maximum value for the 
permeability. 
The approach is based  on the developments of extended irreverible thermodynamics  by 
viewing the porous medium as a two-component system. Main results are embedded in the 
differential Eq. (20), expressing the fluid velocity in terms of the relevant parameters. 
Contrary to classical hydrodynamics, the non-slip condition requiring that the fluid velocity 
vanishes at the boundaries is no longer valid because the thickness of the boundary layer  has a 
characteristic length comparable to that of the nanopores and its influence will therefore be felt 
in the whole system. At nano-scales, slip flows become important and by analogy with the 
developments of microfluidics, we  assume that the velocity at the boundaries is proportional 
to the slipping length ℓ  (see Eq. (26)), whose determination remains a delicate task. If ℓ  is 
negative, it is often identified as the thickness of a stagnant nanolayer (also called boundary 
stick) (Alibakhshi et al (2016)). If ℓ  is positive, the fluid shows a full-slip behaviour due to a 
reduced wall friction (Wu et al., 2017). 
The model has been developed in a way that would allow to take into account several significant 
parameters, to mention slip lengths and inter-particle distances whose experimental and/or 
theoretical determination remains a delicate and open task. The validity of our model has been 
assessed by calculating the overall flow rate versus the applied pressure drop and comparing 
with experimental data provided by water and n-hexane flows through Vycor glass nanopores. 
The results exhibit a good agreement, with much more satisfactory results than the usual Darcy 
law-like derivations. 
Our model can be easily extended for compressible gases, by including density dependencies 
on time and spatial coordinates. 
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Appendix A: absolute permeability 
 
The expression for the absolute permeability can be found by taking the asymptotic limit 𝜙 →
1 of a porous medium and stating that this should be equal to Poiseuille flow through a large 
cylinder (with, of course, absence of porous material, i.e. 𝜌 → 0) with an equivalent overall 
flow rate or mean velocity. For a large (well above nanoscopic dimensions) cylinder, this means 
that Eq. (9) becomes  
 

− 𝜇 𝑟 = 0         (A1) 

 
which represents a simple steady-state Poiseuille flow. The solution of (A1) for a non-slip 
boundary (at 𝑟 = 𝑅) and a maximum velocity in the middle of the cylinder (𝑟 = 0) is 
 

𝑣 =           (A2) 

 

The mean velocity (using Eq. (23) and ≡ − ) is then 

 

〈𝑣 〉(𝑅) =           (A3) 

 
For the porous medium, Darcy’s law predicts that the mean velocity from Eq. (21), with the 
asymptotic limit 𝜙 → 1, is     
 

〈𝑣 〉 =            (A4) 

 
Equalling Eqs. (A3) and (A4) leads finally to Eq. (25). The same procedure can be repeated for 
the parallelepiped configuration, resulting in Eq. (31). 
 
Appendix B: slip correction coefficients 
 
The values of the slip corrections factors 𝐶  and 𝐶 , introduced in the boundary conditions (26) 
and (34) will be determined by imposing that the velocity is minimum, truly zero, at slip lengths 
ℓ = −𝑅 and ℓ = −𝐻/2 for the cylindrical and parallelepiped pores, respectively. Zero 
velocity, through Eq. (1) is equivalent to zero effective permeability. A second condition is 
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necessary to assure mathematically that zero permeability is the strict minimum. In summary, 
𝐶  and 𝐶  should be thus that 
 

 lim
ℓ →

𝐾 = 0     ⋀     lim
ℓ → ℓ

= 0 

 

lim
ℓ → /

𝐾 = 0     ⋀     lim
ℓ → / ℓ

= 0 

 
Using the respective Eqs. (29) and (35), one finds the following expressions for the slip 
correction factors. 
 
Table B.1. Slip correction factors corresponding to Eq. (29) 
Related to equation 𝐶   𝐶  
(29)  ℱ ,

 ℱ ,

  
 ℱ ,

 ℱ ,

  

(29A)  𝔅 ,

𝔅 ,
  

 𝔅 ,

𝔅 ,
  

(29C)  ℱ ,

 ℱ ,

  
 ℱ ,

 ℱ ,

  

 
Table B.2. Slip correction factors corresponding to Eq. (35) 
Related to 
equation 

𝐶   𝐶  

(35) 
2 𝐶𝑜𝑡ℎ   

− − 12𝐾𝑛   

1 −

𝑇𝑎𝑛ℎ   

(35A) 
2 𝐶𝑜𝑡ℎ −   1 − 𝑇𝑎𝑛ℎ   

(35C) 4𝐾𝑛 𝐶𝑜𝑡ℎ − 8𝐾𝑛   4𝐾𝑛 − 8𝐾𝑛 𝑇𝑎𝑛ℎ   

 
 
Appendix C: effective viscosity 
 
It is well recognized that the viscosity of a fluid flowing in  nanopores will be influenced  by 
the pore characteristics. Recently (Lebon and Machrafi, 2018), the effect of the presence of 
nanostructures dispersed in a fluid was studied within the framework of Extended Irreversible 
Thermodynamics. The principles and methods used in that paper can be implemented in the 
present work as well. The main steps of the analysis may be summarized as follows. 
1. The space of the state variables is extended by including the pressure tensor denoted  𝐏( ) 

and his higher moments 𝐏( ), …, 𝐏( ), with n tending to infinity.  
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2. These extra variables obey a hierarchy of linearized time evolution equations of the general 
form  

𝛽 ∇𝑷( ) − 𝛼 𝜕 𝑷( ) +  𝛽 ∇. 𝑷( ) = 𝛾 𝑷( )        𝑛 = 1,2, …   (C1) 
 
wherein 𝛼 , 𝛽  and 𝛾  are phenomenological coefficients related to relaxation times of the 
variables, correlation length and transport coefficients.   
 
3. Applying a Fourier transform to the set (C1), one obtains a generalized Newton’s 

constitutive law which, for steady situations reads as  
 

𝑷⏞ (𝒌) =  −𝑖𝒌𝜇 (𝒌) 𝒗⏞ (𝒌),                                          (C2)   
 
with a upper hat designating Fourier’s transforms, 𝒗 the velocity field and 𝒌 the wavenumber 
whereas the viscosity 𝜇 (𝒌) is expressed by the following 𝒌-dependent continued  fraction  
 
𝜇 (𝑘) =

²

²

⋯

,                                                                                                       (C3) 

 
where 𝜇 is the viscosity of the bulk fluid in absence of nanostructures and 𝑙  (𝑛 = 1,2, …) are  
correlation lengths defined by 𝑙 = 𝛽 𝛾 𝛾⁄  (e.g. Jou et al. 2010).  
 
4.  In the applications considered above, there is only one reference length so that it is natural 
to select a one-dimensional wave number 𝑘 as given  by 𝑘 =  2𝜋/𝑅 and 𝑘 = 2𝜋/𝐻 for 
cylindrical and parallepedic pores, respectively. Moreover, introducing a reference length 𝑙, 
identified as the mean free path of the fluid particles through 𝑙 = 𝑙 𝑛 /(4𝑛 − 1) (a well-
known kinetic relation) and letting 𝑛 → ∞, one obtains the final expression of the effective 
viscosity in terms of 𝐾𝑛, namely 
 

𝜇 =
 

(  )
− 1 .        (C4) 

 


