Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification
Itô stochastic differential equation; Markov Chain Monte Carlo; Bayesian inference; Error budget; Limited data
Abstract :
[en] This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis–Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Itô stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Itô SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Arnst, Maarten ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Abello Álvarez, Belén
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Language :
English
Title :
Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification
Ghanem, R., Doostan, A., On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217 (2006), 63–81.
Arnst, M., Ghanem, R., Soize, C., Identification of Bayesian posteriors for coefficients of chaos expansions. J. Comput. Phys. 229 (2010), 3134–3154.
Marzouk, Y., Najim, H., Rahn, L., Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224 (2007), 560–586.
Soize, C., Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. Int. J. Numer. Methods Eng. 76 (2008), 1583–1611.
Guilleminot, J., Soize, C., Itô SDE-based generator for a class of non-Gaussian vector-valued random fields in uncertainty quantification. SIAM J. Sci. Comput. 36 (2014), A2763–A2786.
Staber, B., Guilleminot, J., Approximate solutions of Lagrange multipliers for information-theoretic random field models. SIAM/ASA J. Uncertain. Quantificat. 3 (2015), 599–621.
Soize, C., Polynomial chaos expansion of a multimodal random vector. SIAM/ASA J. Uncertain. Quantificat. 3 (2015), 34–60.
Doob, J., Stochastic Processes. 1990, Wiley–Blackwell, New York, NY.
Soize, C., The Fokker–Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution. 1994, World Scientific, Singapore.
Da Prato, G., Zabczyk, J., Ergodicity for Infinite Dimensional Systems. 1996, Cambridge University Press, Cambridge, UK.
Mattingly, J., Stuart, A., Higham, D., Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101 (2002), 185–232.
Comets, F., Meyre, T., Calcul Stochastique et Modèles de Diffusions. 2006, Dunod, Paris, France.
Lelièvre, T., Rousset, M., Stolz, G., Free Energy Computations. 2010, Imperial College Press, London, UK.
Khasminskii, R., Stochastic Stability of Differential Equations. 2012, Springer, Berlin, Germany.
Ottobre, M., Pavliotis, G., Pravida Starov, K., Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal. 262 (2012), 4000–4039.
Pavliotis, G., Stochastic Processes and Applications. 2014, Springer, New York, NY.
Leimkuhler, B., Matthews, C., Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. 2015, Springer, New York, NY.
Roberts, G., Tweedie, R., Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2 (1996), 341–363.
Duane, S., Kennedy, A., Pendleton, B., Roweth, D., Hybrid Monte Carlo. Phys. Lett. B 195 (1987), 216–222.
Neal, R., MCMC using Hamiltonian dynamics. Brooks, S., Gelman, A., Jones, G., Meng, X., (eds.) Handbook of Markov Chain Monte Carlo, 2011, Chapman & Hall/CRC, Boca Raton, FL, 113–160.
Girolami, M., Calderhead, B., Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73 (2011), 123–214.
Bickel, P., Doksum, K., Mathematical Statistics: Basic Ideas and Selected Topics. 2015, Chapman & Hall/CRC, Boca Raton, FL.
Le Maître, O., Knio, O., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. 2010, Springer, New York, NY.
Arnst, M., Ponthot, J., An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. Int. J. Uncertain. Quantificat. 4 (2014), 387–421.
Dudley, R., Real Analysis and Probability. 2002, Cambridge University Press, Cambridge, UK.
Le Cam, L., Lo Yang, G., Asymptotics in Statistics: Some Basic Concepts. 2000, Springer, New York, NY.
Kleijn, B., van der Vaart, A., The Bernstein–Von Mises theorem under misspecification. Electron. J. Stat. 6 (2012), 354–381.
Soize, C., Poloskov, I., Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation. Comput. Math. Appl. 64 (2012), 3594–3612.