Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas
Bogaert, K. A.; Manoharan-Basil, S. S.; Perez, E.et al.
Life sciences: Multidisciplinary, general & others
Author, co-author :
Bogaert, K. A.; Theoretical Physical Chemistry, UR MOLSYS, University of Liège, Liège, Belgium
Manoharan-Basil, S. S.; Genetics and Physiology of Microalgae, UR InBios, University of Liège, Liège, Belgium
Perez, E.; Genetics and Physiology of Microalgae, UR InBios, University of Liège, Liège, Belgium
Levine, Raphaël David; Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Remacle, Claire ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Language :
English
Title :
Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas
Publication date :
2018
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science
Volume :
13
Issue :
4
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 618024 - BAMBI - Bottom-up Approaches to Machines dedicated to Bayesian Inference
Rochaix JD. Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett. 2002; 529: 34–8. PMID: 12354609
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 2007; 318: 245–52. https://doi.org/10.1126/science.1143609 PMID: 17932292
Blaby IK, Blaby-Haas CE, Tourasse N, Hom EFY, Lopez D, Aksoy M, et al. The Chlamydomonas genome project: A decade on. Trends Plant Sci. 2014; 19: 672–80. https://doi.org/10.1016/j.tplants.2014.05.008 PMID: 24950814
Benstein RM, Çebi Z, Podola B, Melkonian M. Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Mar Biotechnol. 2014; 16: 621–8. https://doi.org/10.1007/s10126-014-9581-0 PMID: 24939718
Solé A, Matomoros V. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere. 2016; 164: 516–23. https://doi.org/10.1016/j.chemosphere.2016.08.047 PMID: 27619062
Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One. 2014; 9(4).
Kravchenko-Balasha N, Levitzki A, Goldstein A, Rotter V, Gross A, Remacle F, et al. On a fundamental structure of gene networks in living cells. Proc Natl Acad Sci USA. 2012; 109: 4702–7. https://doi.org/10.1073/pnas.1200790109 PMID: 22392990
Remacle F, Kravchenko-Balasha N, Levitzki A, Levine RD. Information-theoretic analysis of phenotype changes in early stages of carcinogenesis. Proc Natl Acad Sci USA. 2010; 107: 10324–9. https://doi.org/10.1073/pnas.1005283107 PMID: 20479229
Zadran S, Remacle F, Levine RD. miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proc Natl Acad Sci USA. 2013; 110: 19160–5. https://doi.org/10.1073/pnas.1316991110 PMID: 24101511
Remacle F, Levine RD. Statistical thermodynamics of transcription profiles in normal development and tumorigeneses in cohorts of patients. Eur Biophys J. 2015; 44: 709–26. https://doi.org/10.1007/s00249-015-1069-y PMID: 26290059
Kravchenko-Balasha N, Remacle F, Gross A, Rotter V, Levitzki A, Levine RD. Convergence of logic of cellular regulation in different premalignant cells by an information theoretic approach. BMC Syst Biol 2011; 5:42. https://doi.org/10.1186/1752-0509-5-42 PMID: 21410932
Willamme R, Alsafra Z, Arumugam R, Eppe G, Remacle F, Levine RD, et al. Metabolomic analysis of the green microalga Chlamydomonas reinhardtii cultivated under day/night conditions. J Biotechnol. 2015 May 2; 215: 20–6. https://doi.org/10.1016/j.jbiotec.2015.04.013 PMID: 25941156
Levine RD. Molecular reaction dynamics. Cambridge: Cambridge University Press; 2004.
Pröschold T, Harris EH, Coleman AW. Portrait of a species: Chlamydomonas reinhardtii. Genetics. 2005; 170: 1601–10. https://doi.org/10.1534/genetics.105.044503 PMID: 15956662
Harris EH. The Chlamydomonas Sourcebook. Elsevier Inc.; 1989.
Plancke C, Vigeolas H, Höhner R, Roberty S, Emonds-Alt B, Larosa V, et al. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J. 2014; 77: 404–17. https://doi.org/10.1111/tpj.12392 PMID: 24286363
Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics. 1990; 126: 875–88. PMID: 1981764
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29: 15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID: 23104886
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. TopHat and Cufflinks_Protocol. Nat Protoc [Internet]. 2012; 7:562–78.
Kravchenko-Balasha N, Simon S, Levine RD, Remacle F, Exman I. Computational surprisal analysis speeds-up genomic characterization of cancer processes. PLoS One. 2014; 9(11).
Piras V, Selvarajoo K. The reduction of gene expression variability from single cells to populations follows simple statistical laws. Genomics. 2015; 105: 137–44. https://doi.org/10.1016/j.ygeno.2014.12. 007 PMID: 25554103
Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, et al. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci USA. 2013; 110: 3621–6. https://doi.org/10.1073/pnas.1222375110 PMID: 23345435
Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to sage data. Biostatistics. 2008; 9: 321–32. https://doi.org/10.1093/biostatistics/kxm030 PMID: 17728317
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003; 34: 374–8. PMID: 12613259
Kim SK, Feild E, King N, Yaoi T, Kustu S, Inwood W. Spontaneous mutations in the ammonium transport gene AMT4 of Chlamydomonas reinhardtii. Genetics. 2005; 170: 631–44. https://doi.org/10.1534/genetics.105.041574 PMID: 15802504
Kornberg HL, Krebs SHA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957; 179: 988–91. PMID: 13430766
Beale S. Biosynthesis of chlorophylls and hemes. In: Stern D, editor. Chlamydomonas Sourcebook 2nd ed. Academic Press; 2009. p. 731–98.
Brumfield KM, Moroney J V., Moore TS, Simms TA, Donze D. Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol. PLoS One. 2010; 5(1).
Smith SJ, Parks LW. The ERG3 gene in Saccharomyces cerevisiae is required for the utilization of respiratory substrates and in heme-deficient cells. Yeast. 1993; 9: 1177–87. https://doi.org/10.1002/yea.320091104 PMID: 8109167
Moseley JL, Chang CW, Grossman AR. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell. 2006; 5: 26–44. https://doi.org/10.1128/EC.5.1.26-44.2006 PMID: 16400166
Tibiletti T, Auroy P, Peltier G, Caffarri S. Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol. 2016; 171: 2717–30. https://doi.org/10.1104/pp.16.00572 PMID: 27329221
Höhner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, et al. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics. 2013; 12: 2774–90. https://doi.org/10.1074/mcp.M113.029991 PMID: 23820728
Strenkert D, Limso CA, Fatihi A, Schmollinger S, Basset GJ, Merchant SS. Genetically programmed changes in photosynthetic cofactor metabolism in copper-deficient Chlamydomonas. J Biol Chem. 2016; 291:19118–31. https://doi.org/10.1074/jbc.M116.717413 PMID: 27440043
Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, et al. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell. 2012; 24: 2649–65. https://doi.org/10.1105/tpc.112.098962 PMID: 22685165
Lopez DA, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, et al. Dynamic changes in the transcriptome and methylome of Chlamydomonas reinhardtii throughout its life cycle. Plant Physiol. 2015; 169: 2730–43. https://doi.org/10.1104/pp.15.00861 PMID: 26450704
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, et al. Predalgo: A new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol. 2012; 29: 3625–39. https://doi.org/10.1093/molbev/mss178 PMID: 22826458
Pootakham W, Gonzalez-Ballester D, Grossman AR. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol. 2010; 153: 1653–68. https://doi.org/10.1104/pp.110.157875 PMID: 20498339
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: How Chlamydomonas works against the gradient. Plant J. 2015; 82: 429–48. https://doi.org/10.1111/tpj.12829 PMID: 25765072