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Abstract

The usual cultivation mode of the green microalga Chlamydomonas is liquid medium and

light. However, the microalga can also be grown on agar plates and in darkness. Our aim is to

analyze and compare gene expression of cells cultivated in these different conditions. For

that purpose, RNA-seq data are obtained from Chlamydomonas samples of two different labs

grown in four environmental conditions (agar@light, agar@dark, liquid@light, liquid@dark).

The RNA seq data are analyzed by surprisal analysis, which allows the simultaneous meta-

analysis of all the samples. First we identify a balance state, which defines a state where the

expression levels are similar in all the samples irrespectively of their growth conditions, or lab

origin. In addition our analysis identifies additional constraints needed to quantify the deviation

with respect to the balance state. The first constraint differentiates the agar samples versus

the liquid ones; the second constraint the dark samples versus the light ones. The two con-

straints are almost of equal importance. Pathways involved in stress responses are found in

the agar phenotype while the liquid phenotype comprises ATP and NADH production path-

ways. Remodeling of membrane is suggested in the dark phenotype while photosynthetic

pathways characterize the light phenotype. The same trends are also present when perform-

ing purely statistical analysis such as K-means clustering and differentially expressed genes.

Introduction

Chlamydomonas reinhardtii is a unicellular green microalga which has been a reference organ-

ism for photosynthetic studies for decades [1]. With the completion of the sequencing of its

nuclear genome [2], Chlamydomonas has also become a model of choice for expression studies
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aimed at dissecting acclimation to various conditions and perturbations (excess light, varia-

tions of CO2 concentrations, nutrient deprivation, metal stress, etc.) using -omics strategies

[3]. Until now, most of the -omics analyses have been performed when cells are cultivated in

the light and liquid medium. However, the natural habitat of Chlamydomonas spp. also

includes distinct environmental niches such as soil (the source of the C. reinhardtii strain), gla-

cier (C. nivalis also known as snow alga) and ponds [1], which means that cells may also

encounter periods of darkness and assimilate organic compounds.

Cultivations in the light or in darkness, but also in liquid or on solid medium are thus rep-

resentative of what Chlamydomonas may experience in its natural environment. In addition,

looking at algal expression in non-standard conditions is also justified as immobilized microal-

gae on solid-state photobioreactors represent a growing field of investigation for production of

high value compounds [4] and wastewater remediation [5]. Moreover growth in fermenters

may lead to higher biomass and lipid yields than in the light [6]. To understand the main char-

acteristics of cell expression in the four different conditions mentioned above (agar@light,

agar@dark, liquid@light, liquid@dark), we performed a transcriptomics analysis. The RNA-

seq response data coming from samples of two different labs grown in the four growth condi-

tions were examined using surprisal analysis. Surprisal analysis is a thermodynamic approach

which provides a biophysicochemical understanding and quantitative characterization of

-omics data using a molecule centered approach. It has been applied successfully for transcrip-

tomics expression levels in human cells [7–11] and recently on metabolic data in C. reinhardtii
[12]. The method allows defining a balance state, also called steady state, common to all the

types of samples. In the balance state, the transcript levels for all the growth conditions are

identical within experimental error. Therefore, the balance state can serve as a reference to

which the measured transcript levels can be compared. In surprisal analysis, the deviations of

the transcript levels with respect to the balance state are quantified by constraints that charac-

terize their response to a perturbation or variables influencing the transcriptome [7–11]. We

concluded that the first constraint differentiates between agar-grown and liquid-grown pheno-

types, while the second constraint differentiates the dark-grown and light-grown ones. First

and second refer to the importance of the two constraints as determined by the analysis. In the

present case however the second constraint is almost as important as the first. Gene families

contributing the most to the first and second constraint are identified.

We compared the results of surprisal analysis to conventional purely statistical methods

currently used to analysis gene expression levels: K-means clustering and differentially

expressed genes. The main difference is that the purely statistical analyses are carried out on

mean centered data, while surprisal analysis yields a balance state compared to which the

changes due to the different growth conditions are quantified on a thermodynamical basis

[7,8,10,13] (see Material and methods below). The balance state represents a stable steady state

of minimum free energy. In the balance state, each gene has a prior thermodynamic weight

and those are not uniform. The constraints provide a measure on how much the free energy of

a gene in given ‘growth condition’ sample deviates from its thermodynamic weight in balance

state due to the unbalanced processes that correspond to the phenotype of constraint. Despite

the fact that surprisal analysis and purely statistical analysis use measures of a different nature,

both type of analysis yield to similar phenotypic trends.

Material and methods

Strains and growth cultivation

The wild-type reference strain of our laboratory derived from the 137C strain [14] was used

for the analysis of samples grown on agar plates. For that purpose, the strain was serially
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diluted and isolated colonies were cultured on agar plates at 25˚C, in low light (50 μE.m-2.s-1)

and acetate (17 mM, Tris-Acetate-Phosphate, TAP medium) [15], in darkness and TAP, or in

darkness TAP + peptone (0.1%) to boost growth in the dark. Colonies were picked up for

RNA-seq analysis when they reached 0.5–0.8 cm of diameter, corresponding to 5x105 to 1x106

cells per colony, which represents 10 days of cultivation for light-grown colonies and 3 weeks

for dark-grown colonies. For liquid grown samples, a complemented version of our reference

strain was used, the iclC strain. The iclC strain is very similar to our reference strain as

described in [12,16]. iclC was inoculated from a 48 h liquid preculture into a sterilized Multi-

Cultivator MC 1000-OD (Photon Systems Instruments) containing 80 mL of Tris-Phosphate

[15], buffered with HCl at pH 7.0 with specific acetate concentrations (17 mM, 31 mM, 44

mM or 57.5 mM, sodium acetate). The experimental cultures were grown under moderate

light (50 μE.m-2.s-1). Two time points of the growth curves (12h and 28h of growth) were cho-

sen for RNA extraction, corresponding to early (�1x106 cells/mL) and mid-exponential

(�4x106 cells/mL) growth phase. The growth curves were made in triplicate.

RNA extraction

For agar-grown samples, colonies were frozen at -80˚C before RNA extraction. RNA was iso-

lated from individual colonies using RNeasy Qiagen plant kit. For liquid-grown samples,

1.5x107 cells were pelleted for RNA extraction at time point 12h and 5.5x107 cells at time point

28h. RNA was extracted according to [17]. RNA samples were quantified by Ribogreen and

those passing the quality control (Bioanalyzer, Agilent technologies, Agilent 2100 Expert soft-

ware) were selected for cDNA synthesis.

Sequencing

Library preparation started with 100 ng total RNA for agar-grown samples 500 ng total RNA

for liquid-grown samples. Illumina Sequencing (SE 1x75 on a NextSeq500 machine) was per-

formed at the GIGA-R Sequencing platform (University of Liège) following manufacturer’s

protocol (Illumina Inc, San Diego CA, USA).

Read trimming and quality filtering

Read quality was assessed with FastQC v.0.11.5 (www.bioinformatics.babraham.ac.uk/

projects/). No significant problems were observed.

Quality filtering of RNA-seq samples was done on single-end reads using trimmomatic

(v0.36) [18], removing low quality sequences (average Q20 over a 4-base sliding window, mini-

mum length = 50 bp with a leading and trailing quality threshold of Q25).

Read mapping

Mapping of the reads to the Chlamydomonas reinhardtii genome v5.5 assembly [2] was done

using STAR [19] with default presets except for intron size (-alignIntronMin 20 and -alignIn-

tronMax 3000). More than 12 million uniquely mapping reads were mapped per sample (S1–

S4 Tables). Agar-grown sample 18_2 showed a particular low yield of reads and a low fraction

of uniquely mapping reads (19%). Therefore this sample was omitted from the data set (S1

Table). The uniquely mapping reads were assigned to the primary transcripts using cuffquant

and cuffdiff (v2.2.1) with the default fragment size of 200 and standard deviation of 80 [20].

Expression estimates were normalized to library size and gene length by cufflinks to calculate

the FPKM values (S5 Table).
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Surprisal analysis

Surprisal analysis is based on thermodynamical entropy [7,8,10,13,21] and therefore is carried

on the logarithm of the gene expression levels.

In editing the data for surprisal analysis all transcripts with an average FPKM value lower

than 1 based from the agar grown colonies were removed because most of the noise is due to

low expression values, in particular those below 1 FPKM [22]. In total 12774 genes were kept

in the data set. Values lower than 0.01 FPKM were substituted with 0.01 FPKM to allow the

computation of logarithms and expression ratios (S5 Table).

The natural logarithm (Yi(s), where i stands for a gene and s for a sample) of the N = 12774

gene expression values, Xi(s), in each of the 38 samples was subjected to surprisal analysis [7–

11], (tutorial in [21]). The values Yi(s) are arranged in a N x Ns rectangular matrix Y, where

Ns = 38 is the number of samples. The constraints, Giα, and Lagrange multipliers, λα(s) are

determined via the singular value decomposition (SVD) of Y as described by [8].

YiðsÞ ¼ lnXiðsÞ ¼ lnX0

i þ
XNs

a¼1

GialaðsÞ ð1Þ

Here α is the index of constraints, Ns is the total number of samples, i is the index of the gene

and s is the index of the sample. The expression for Giα and λα(s) are given by the eigenvectors

and the eigenvalues of the SVD of the matrix Y:

Gia ¼ Uia and laðsÞ ¼ oaVas ð2Þ

where U and V are respectively the left and right eigenvectors of the Y matrix as determined

by the SVD procedure and ωα the singular values. The eigenvalues of the Y matrix are ordered

by decreasing order and when all the Ns terms are kept, the surprisal expression of the tran-

script levels given in Eq (1) is an exact representation of the data. Usually just a few terms in

Eq (1) (smaller than the number of samples Ns) suffice to describe the input. Each constraint α
corresponds to a given phenotype. For a given value of α, the surprisal analysis allows for a

factorization between the weight of the constraint, Giα, on a given gene i and the Lagrange

multiplier, λα(s), that is the weight of sample s in the phenotype that corresponds to the con-

straint α.

In the first term of Eq (1), lnX0
i ¼ Gi0l0, corresponds to the prior thermodynamical weight

of the gene ‘i’ in the balanced state. The balance state is this stable state that is common to all

the colonies and with respect to which the changes in the gene expression levels due to the

successive constraints, α = 1, . . ., Ns, are expressed. The larger is the prior thermodynamical

weight of a gene i, Gi0λ0, the more stable it is, and the lower is its free energy which is given

by � lnX0
i ¼ � Gi0l0. The constraints provide a quantitative measure of the deviation with

respect to the balance state. By plotting the values of the Lagrange multipliers for the different

colonies for a given constraint α, one can identify different groups of samples that differ by the

sign of their Lagrange multiplier, λα(s) for the phenotype α. In particular, we show above that

for the first constraint, α = 1, samples grown on agar and those grown in liquid have an oppo-

site sign of their Lagrange multipliers. The analysis of the weights of the corresponding pheno-

type vector, Giα, over the genes in terms of pathways gives access to the different pathway

contributions to the phenotype agar-grown versus liquid-grown. For α = 2, samples grown in

the dark and samples grown in the light are characterized by Lagrange multipliers of different

signs. The analysis of the corresponding phenotype allows identifying the pathways that con-

tribute most to the growth in dark and light conditions respectively.
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Differential gene expression in the constraint vector Giα

Genes of the phenotype associated with each constraint α were ranked according the value of

the weight Giα. According to this ranking, 100 smallest and largest values were considered dif-

ferentially expressed for each phenotype. In the case of the balance state, genes that correspond

to a term Gi0λ0 > 0 are the most stable and those for which Gi0λ0 > 0 are unstable. The latter

are the genes that will appear with the largest and the smaller weights in the phenotypes associ-

ated with the constraints and therefore will be the most differentially expressed in the con-

straints, α = 1, . . ., Ns.

Gene set enrichment

In [7], differential expression of gene ontology classes have been assessed using hypergeomet-

ric tests on differentially expressed genes for the different constraints. Here we developed a

complementary approach, which consists of assigning a weight to each pathway in a given phe-

notype described by the constraint α. This approach has the advantage to take into account

the weights of all the genes, Giα, in a given constraint and therefore do not to depend on the

number of genes (typically 100) kept in the differential gene expression analysis. The two

approaches are complementary because pathways that comprise several genes that have a high

weight in a given phenotype (and therefore appear in the genes most differentially expressed)

will have a large weight.

Genes were categorized in gene sets using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (http://www.genome.jp/kegg/) and the functional annotation info for C. reinhardtii
v5.5 predicted proteins were obtained from the correspondence table downloaded from

Phytozome.

Pathways that correspond to a gene set with less than 10 genes were omitted from the data-

set. For each constraint, α, of interest, each subset of genes was divided in two subsets accord-

ing to the sign of their weight Giα. For a given set of genes that corresponds to the pathway J,
the Giα values for genes that are respectively larger or smaller than zero were summed together

to get respectively the positive (P) and negative (N) weight of the pathway for constraint α:

PJ
a
¼
XNj

i¼1

G2

ia for Gia > 0 ð3Þ

NJ
a
¼
XNj

i¼1

G2

ia for Gia < 0 ð4Þ

The ratio

SRJ ¼ P
J
a
=NJ

a
ð5Þ

is a measure for the contribution of the gene set of pathway J to constraint α. In Eq (5), NJ is

the number of genes in pathway J.
Set ratios, SRJ, were ordered according their value describing their importance for the

described phenotype. These gene sets where all values Giα are either positive or negative, were

subsequently ranked on PJ
a

or NJ
a

respectively.

Both low ratios and high ratios are predicted by surprisal analysis to be important for the

phenotype and to be enriched in their respective phenotypes. For the balance state, genes that

correspond to a term Gi0λ0 > 0 are the most stable and those for which Gi0λ0 < 0 are unstable.

For the first phenotype, genes which correspond to a term Gi1λ1(s)>0 are overexpressed for
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samples grown in liquid conditions and underexpressed for samples grown on agar while

genes for which Gi2λ2(s)>0 are overexpressed in the light conditions and underexpressed in

dark ones. Since the values of the Lagrange multiplier, λ1(s), are positive for the colonies

grown in liquid phase and negative for those grown on agar (see Figs 1 and 2), high SR path-

way ratios correspond to gene sets that are overexpressed for samples grown in liquid

Fig 1. Lagrange multipliers values for the balance state (λ0(s)), the first (λ1(s)) and the second (λ2(s)) constraint.

(A) λ0, (B) λ1 and (C) λ2 values are determined using the 38 samples, see Methods.

https://doi.org/10.1371/journal.pone.0195142.g001
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conditions and low SR ratios correspond to gene sets that are over expressed for samples

grown on agar. For the second constraint, samples grown in light conditions have a positive

Lagrange multiplier λ2(s) while samples grown in the dark have negative λ2(s) values. So high

SR pathway ratios correspond to gene sets that are over expressed for samples grown in light

conditions while low SR ratios values correspond to gene sets that are over expressed in dark

grown samples.

Randomization

1000 random combinations of biological replicates of the AL (6), AD (3), LL (3) series were

drawn to confirm the consistency of the surprisal analysis under influence of biological

Fig 2. Lagrange multipliers values for the balance state (λ0(s)), the first (λ1(s)) and the second (λ2(s)) constraint.

The λ0(s), λ1(s) and λ2(s) values are determined using 1000 random combinations of 14 samples out of the 38 available.

https://doi.org/10.1371/journal.pone.0195142.g002
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variation. The 2 samples from the LD series (LD1 and LD2) from [23] were always included

due to the low number of replicates available in the study. The clustering of λ1(s) and λ2(s)
into two groups, liquid versus agar and dark versus light for each drawn subset was tested

using a Wilcoxon t-test. The threshold for of the pvalue was set to <0.05. In all subsets two

groups corresponding to the two variables, λ1(s) and λ2(s), could be identified. Because the

sign of λ0(s) and Giα is a convention selected automatically by the SVD procedure, they dif-

fer between subsets. Signs were reattributed to a chosen convention depending on the sign

of Giα of one of the most enriched genes for the experimental variable in the analysis of all

samples.

DGE analysis

Expression levels (FPKM) were square root transformed and tested for differential expression

using CLC Genomics Workbench (10.0.1) by ‘Exact Test’ for two-group comparisons [24]

using a total count filter cutoff of 5.0 and gene specific estimation of tag-wise dispersions.

Genes that had a fold change of> 2 and FDR-corrected P value of< 0.5 were judged to be sig-

nificantly differentially expressed.

K-means clustering

The KMC K-means algorithm of MeV (version 4.8.1) [25] was implemented to cluster the

12774 genes. FPKM values were ln-transformed and mean-centered at the gene-level. The fig-

ure of merit algorithm was used to estimate the appropriate number of clusters. K-means clus-

tering using Pearson’s correlation as a measure was then applied to separate the genes into 4

groups of coregulated genes.

Results and discussion

To obtain transcriptomics data of samples cultivated on agar plates, serial dilutions of our ref-

erence wild-type strain derived of the 137C strain [14] were performed to get between 15 and

80 isolated colonies per plate and plates were transferred in low light (50 μE.m-2.s-1) or in the

dark, on acetate containing medium (17 mM). Individual colonies were picked up for RNA-

seq analysis when they reached 0.5–0.8 cm of diameter, corresponding to 5x105 to 1x106 cells

per colony (S1 Fig). RNA seq data were obtained from 23 colonies grown on agar in the light,

named AL for Agar-Light (AL1-AL23) and 5 colonies grown on agar in the dark, named AD

for Agar-Dark (AD1-AD5) (S1 and S2 Tables). Transcriptomics data of cells cultivated in liq-

uid medium and in the light (50 μE.m-2.s-1) were obtained using a similar strain [12,16] grown

at different acetate concentrations (17 mM, 31 mM, 44 mM and 57.5 mM). Samples were har-

vested at two time points of the growth curve corresponding to the early (1x106 cells/mL) and

the mid-exponential (4x106 cells/mL) phase, named LL for Liquid-Light (LL1-LL8) (S3 Table).

Transcriptomics data of cells cultivated in the dark in liquid medium in the presence of acetate

(17 mM) were obtained from [23] using another reference strain also derived from the 137C

strain [23] and named LD for Liquid-Dark (LD1-LD2) (S4 Table). Surprisal analysis of the

RNA seq data from the 38 samples (AL1-AL23, AD1-AD5, LL1-LL8, LD1-LD2) was then car-

ried out in order to characterize gene expression. Surprisal analysis is a methodology that iden-

tifies constraint(s) explaining the phenotype of individual entities which can be single cell lines

[7,8,11], tissues in human patients [9] or in our case microalgal cells [12]. Our aim here is to

identify the constraints that would allow differentiating and characterizing the different

samples.
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The first and second constraints allow discriminating between agar/liquid

and dark/light samples respectively

The values of the Lagrange multipliers and of the constraints were computed as described in

the ‘Surprisal analysis’ section of Methods. The balance or steady state, that is the reference sta-

ble distribution of expression levels common to all samples in the absence of any biological

constraint, is defined by the Lagrange multiplier λ0(s) and the balance state phenotype G0. The

λ0(s) values for each sample, s, are plotted in Fig 1A. As required for the definition of the bal-

ance state, in which the expression levels of the transcripts are expected to be identical for all

the samples, the values of λ0(s) (where s stands for sample and the value is the importance of

the balanced state) are constant within a range (41 units) that reflects small variations from

sample to sample. Thus we first comment that all the 38 samples exhibit a common balance

state despite the fact they are obtained from two different laboratories (AL1-AL23; AD1-AD5;

LL1-LL8 versus LD1-LD2).

On the other hand, the values of the Lagrange multiplier of the first constraint, λ1(s) (Fig

1B), have different signs depending on whether the samples were grown on agar or in liquid.

λ1(s) is negative for 27 samples (AL1-AL23, AD1-AD2, AD3, AD5) grown on agar on the 28

analyzed and positive for all the 10 samples grown in liquid (LL1-LL8, LD1-LD2). This result

identifies the first constraint as the one that allows discriminating between the agar and liquid

samples. The value of λ1(s) for the sample AD4 is slightly positive and very close to zero. This

indicates that the weight of the first constraint is close to zero for this sample grown on agar in

the dark, which may reflect slightly different growth conditions compared to the other agar

grown colonies. Moreover, the difference between the range of positive and negative values of

λ1(s) is 152 units (Fig 1B), much larger that the range of values of λ0(s), which confirms that

the first constraint is significant for explaining the differences in expression levels with respect

to the balance state. The second constraint (Fig 1C) allows the separation between light and

dark samples since the seven dark samples (AD1-AD5, LD1-LD2) have negative values of λ2(s)
and 30 samples grown in the light (AL1-AL2, AL4-AL23, LL1-LL8) have positive values. Only

one sample grown in the light (AL3) has a slightly negative value, which does not contradict

our conclusions for the same reasons as above. The difference between the range of the nega-

tive and positive values of λ2(s) are also much larger that the range of values of λ0(s) (133

units). The agar versus liquid samples and dark versus light phenotypes segregate from each

other with different signs only in the plots of the Lagrange multipliers of the first and the sec-

ond constraint respectively, indicating that the phenotypes describing agar/liquid and light/

dark conditions are completely encapsulated by the contribution of the first and the second

constraint to the gene expression levels, see Methods (S6 Table). The pathway analysis made in

point 3.2 (see below) also confirms that these two constraints explain these types of growth

conditions.

Different strains are used in this study (137C) and the study of [23] (4A+). 4A+ has been

derived from 137C and selected for rapid growth on acetate in the dark [26]. Therefore strain

specific phenotypes could be characterized by surprisal analysis and associated with a specific

constraint. Interestingly, the λ3(s) values of the 4A+ samples are separated by a gap of about 60

units from the multipliers of those of the 137C samples, see S2 Fig. We note however that

while significantly different in value, the two samples of the 4A+ strain have the same sign of

λ3(s) as several of the AL and AD 137 C samples which suggests that the third constraint does

not lead to a fully unambiguous strain phenotype characterization. We therefore will not ana-

lyze this constraint further.

Results are similar when the surprisal analysis is performed on 1000 random combinations

of 14 samples (6 samples from the AL series, 3 samples from the AD series, 3 samples from the
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LL series, and the 2 samples from the LD series) (Fig 2). λ0(s) values are equivalent to those

found when all the samples are analyzed. λ1(s) has negative values for the agar-grown samples

and positive values for the liquid-grown samples and the values are quite similar to those

found when all the samples are analyzed together. In the same way, the values of λ2(s) are nega-

tive for the dark-grown samples and positive for the liquid-grown samples. These results thus

demonstrate that the first and the second constraints are robust with respect to sampling and

indeed responsible for the difference between agar/liquid and dark/light samples respectively.

Gene set enrichment analysis allows the description of the biological

pathways contributing to the balance state and to the first and second

constraints

Surprisal analysis (see Methods) determines a gene transcript expression profile associated

with each constraint. This transcript expression profile is given by a vector Gα where α is the

index of the constraint and characterizes the phenotype associated with the constraint. The

components Giα of the vector Gα determine the weight of transcript i in the phenotype associ-

ated with the constraint α whose Lagrange multiplier is λ0(s). One can therefore rank the con-

tribution of a transcript to a given phenotype according to its weight, Giα. As described in

section ‘Gene set enrichment’ of Methods, the annotated genes [2] of Chlamydomonas are cat-

egorized in gene sets (KEGG: Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.

jp/kegg/) using the 1000 random combinations of 14 samples cited above. This categorization

therefore allows the identification of gene sets that contribute most to the phenotype associated

with a given constraint, α.

From the Giα values computed for each transcript using surprisal analysis, we define a ‘SR

ratio’ (see Methods Eqs [3–5]) which quantifies the contribution of each gene set associated

with a specific pathway to the phenotype. 113 KEGG pathways are identified in Chlamydomo-
nas comprising 3145 genes of which 2992 are found in our analysis (S7 Table). We thus con-

sider that the first 10 pathways are the most representative of a given phenotype. We begin

by analyzing the gene set composition of the balance state. Logically, acetate assimilation

(Glyoxylate and dicarboxylate metabolism) [27] is found in the balance state, as acetate in the

growth medium is the only common feature of all the conditions and strains used in the study

(Table 1). Pathways of ATP and NADH production (Citrate cycle; 2-Oxocarboxylic acid

Table 1. KEGG pathways contributing most to the balance state.

KEGG pathways Average P0 SD P0 Average N0 SD N0

Ribosome 0 0 7.21E-04 7.03E-06

Photosynthesis—antenna proteins 0 0 3.78E-04 1.02E-05

Oxidative phosphorylation 0 0 3.09E-04 2.22E-06

Phagosome 0 0 2.95E-04 2.01E-06

Glyoxylate and dicarboxylate metabolism 0 0 2.52E-04 2.59E-06

Citrate cycle (TCA cycle) 0 0 2.38E-04 2.84E-06

Valine, leucine and isoleucine biosynthesis 0 0 2.30E-04 3.08E-06

2-Oxocarboxylic acid metabolism 0 0 2.09E-04 1.88E-06

Pentose phosphate pathway 0 0 1.92E-04 1.79E-06

Alanine, aspartate and glutamate metabolism 0 0 1.89E-04 2.07E-06

P0: Positive weight of the gene set in the balance state. N0: Negative weight of the gene set in the balance state. SD: Standard deviation. See Methods for more details

about the methodology.

https://doi.org/10.1371/journal.pone.0195142.t001
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metabolism; Oxidative phosphorylation; Pentose phosphate pathway) are also found as well as

those linked to translation such as amino acid metabolism (Valine, leucine and isoleucine bio-

synthesis; Alanine, aspartate and glutamate metabolism), and ‘ribosome’. These pathways

comprise housekeeping functions necessary for cells to grow and reflect the common features

of all the samples. The pathway ‘Photosynthesis-antenna proteins’ is found in the balance state

although some of the samples are grown in the dark, which is not surprising as cells grown in

the dark synthesize chlorophyll and assemble photosystems [28]. Some of the pathways, like

‘ribosome’ are also described in [7] in the balance state of human cells.

The 10 gene pathways contributing the most to the agar versus liquid phenotype (first con-

straint) are listed in Tables 2 and 3 respectively. The agar-grown condition is more stressful

than the liquid-grown condition since pathways such as ‘regulation of autophagy’, ‘sphingoli-

pid metabolism’ and ‘ubiquitin mediated proteolysis’ are at the top of the list in Table 2.

A few pathways of the liquid phenotype (Table 3) such as ‘2-Oxocarboxylic acid metabo-

lism’ and ‘Oxidative phosphorylation’ are also present in the balance state, which reflects that

the agar-liquid perturbation affects housekeeping genes also found in Gi0. They reflect that

Table 2. KEGG pathways contributing most to the agar-grown phenotype.

KEGG pathways Average P1 SD P1 Average N1 SD N1 Average SR

Regulation of autophagy 1.03E-06 1.69E-06 6.42E-05 9.93E-06 0.02

Sphingolipid metabolism 1.81E-06 8.73E-07 5.20E-05 9.24E-06 0.03

Folate biosynthesis 1.47E-06 5.76E-07 1.80E-05 4.61E-06 0.08

Ubiquitin mediated proteolysis 2.96E-06 6.95E-07 3.11E-05 2.71E-06 0.10

Arachidonic acid metabolism 1.17E-05 3.77E-06 1.15E-04 1.75E-05 0.10

Basal transcription factors 1.74E-06 9.97E-07 1.54E-05 2.86E-06 0.11

ABC transporters 4.39E-06 1.30E-06 3.87E-05 7.76E-06 0.11

Endocytosis 4.73E-06 1.41E-06 2.49E-05 3.41E-06 0.19

SNARE interactions in vesicular transport 3.06E-06 1.86E-06 1.51E-05 2.70E-06 0.20

Sulfur relay system 3.96E-06 1.37E-06 1.95E-05 5.01E-06 0.20

P1: Positive weight of the gene set for constraint 1, N1: Negative weight of the gene set for constraint 1, SR: set ratios (SR = P1/N1) reflecting the contribution of the gene

set to the phenotype, SD: standard deviation. See Methods more details about the methodology.

https://doi.org/10.1371/journal.pone.0195142.t002

Table 3. KEGG pathways contributing most to the liquid-grown phenotype.

KEGG pathways Average P1 SD P1 Average N1 SD N1 Average SR

2-Oxocarboxylic acid metabolism 9.41E-05 9.93E-06 1.99E-06 3.72E-07 47.26

Ribosome 4.22E-05 5.05E-06 1.42E-06 1.53E-06 29.61

Pentose phosphate pathway 9.72E-05 1.19E-05 3.52E-06 3.43E-06 27.59

Biosynthesis of unsaturated fatty acids 4.31E-05 5.89E-06 2.04E-06 8.55E-07 21.12

Phenylalanine, tyrosine and tryptophan biosynthesis 3.22E-05 2.93E-06 1.79E-06 2.18E-06 18.04

Proteasome 1.04E-05 4.81E-06 6.10E-07 1.01E-06 17.00

Oxidative phosphorylation 5.76E-05 5.73E-06 5.18E-06 5.17E-07 11.12

Valine, leucine and isoleucine biosynthesis 4.04E-05 4.18E-06 5.11E-06 8.26E-07 7.89

Ubiquinone and other terpenoid-quinone biosynthesis 1.41E-05 3.57E-06 1.94E-06 9.05E-07 7.31

Carbon fixation in photosynthetic organisms 7.80E-05 9.34E-06 1.09E-05 2.25E-06 7.17

P1: Positive weight of the gene set for constraint 1, N1: Negative weight of the gene set for constraint α = 1, SR: set ratios (SR = P1/N1) reflecting the contribution of the

gene set to the phenotype, SD: standard deviation. See Methods more details about the methodology.

https://doi.org/10.1371/journal.pone.0195142.t003
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the samples from the liquid medium are metabolically active and rely on ATP and NADH pro-

duction linked to acetate assimilation. For the specific pathways of the liquid phenotype, one

can note the presence of ‘Biosynthesis of unsaturated fatty acids’, which could indicate that the

fatty acid composition of the membrane of the cells grown in liquid medium is different from

that of cells grown on agar.

The second constraint allows identifying the phenotype corresponding to dark-light condi-

tions. From the Gi2 values computed for each transcript using surprisal analysis, the ten path-

ways contributing the most to the expression levels of the dark grown samples are shown in

Table 4 and those contributing the most to the light-grown samples are shown in Table 5.

Some of the gene sets characterizing the dark phenotype (Table 4) are common with the

agar phenotype (Table 2) (ABC transporters, Regulation of autophagy, Sphingolipid metabo-

lism, SNARE interactions in vesicular transport, Arachidonic acid metabolism) although their

order of importance is not the same as for the agar-grown samples. The second gene set pre-

vailing most in the dark phenotype (Table 4) is ‘Steroid biosynthesis’. Interestingly it has been

reported that the lack of ergosterol in yeasts, a sterol found in membranes of Chlamydomonas

Table 4. Top 10 KEGG pathways most enriched in dark-grown samples.

KEGG pathways Average P2 SD P2 Average N2 SD N2 Average SR

Valine, leucine and isoleucine biosynthesis 7.93E-07 6.22E-07 9.42E-05 1.34E-05 0.01

Steroid biosynthesis 5.45E-07 2.40E-06 6.40E-05 1.82E-05 0.01

Sulfur metabolism 1.40E-06 6.65E-07 7.16E-05 7.65E-06 0.02

Aminoacyl-tRNA biosynthesis 1.95E-06 1.19E-06 8.60E-05 1.10E-05 0.02

ABC transporters 1.62E-06 1.34E-06 6.31E-05 1.50E-05 0.03

Regulation of autophagy 2.06E-06 5.42E-06 6.75E-05 1.43E-05 0.03

Sphingolipid metabolism 1.91E-06 8.15E-07 3.28E-05 7.06E-06 0.06

SNARE interactions in vesicular transport 2.12E-06 1.39E-06 3.63E-05 6.83E-06 0.06

RNA transport 2.66E-06 2.57E-06 4.48E-05 5.93E-06 0.06

Arachidonic acid metabolism 8.95E-06 2.32E-06 1.41E-04 3.84E-05 0.06

P2: Positive weight of the gene set for constraint 2, N2: Negative weight of the gene set for constraint α = 2, SR: set ratios (SR = P2/N2) reflecting the contribution of the

gene set to the phenotype, SD: standard deviation. See Methods more details about the methodology.

https://doi.org/10.1371/journal.pone.0195142.t004

Table 5. Top 10 KEGG pathways most enriched in light grown samples.

KEGG pathways Average P2 SD P2 Average N2 SD N2 Average SR

Photosynthesis—antenna proteins 7.93E-07 6.22E-07 9.42E-05 1.34E-05 48.36

Photosynthesis 5.45E-07 2.40E-06 6.40E-05 1.82E-05 21.47

Plant hormone signal transduction 1.40E-06 6.65E-07 7.16E-05 7.65E-06 9.43

Glycolysis / Gluconeogenesis 1.95E-06 1.19E-06 8.60E-05 1.10E-05 7.04

Amino sugar and nucleotide sugar metabolism 1.62E-06 1.34E-06 6.31E-05 1.50E-05 5.57

Citrate cycle (TCA cycle) 2.06E-06 5.42E-06 6.75E-05 1.43E-05 5.26

Fructose and mannose metabolism 1.91E-06 8.15E-07 3.28E-05 7.06E-06 4.03

Pentose phosphate pathway 2.12E-06 1.39E-06 3.63E-05 6.83E-06 3.84

Nitrogen metabolism 2.66E-06 2.57E-06 4.48E-05 5.93E-06 3.51

Carbon fixation in photosynthetic organisms 8.95E-06 2.32E-06 1.41E-04 3.84E-05 3.15

P2: Positive weight of the gene set for constraint 2, N2: Negative weight of the gene set for constraint 2, SR: set ratios (SR = P2/N2) reflecting the contribution of the gene

set to the phenotype, SD: standard deviation. See Methods more details about the methodology.

https://doi.org/10.1371/journal.pone.0195142.t005
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[29], impairs growth on respiratory substrates [30]. Thus the presence of this pathway could

suggest membrane adaptation in dark-grown samples. In addition, the third pathway prevail-

ing most in the dark, ‘sulfur metabolism’, could indicate that dark-grown samples may suffer

from sulfur limitation.

Logically, pathways of light utilization (Photosynthesis—antenna proteins; Photosynthesis)

in light-grown phenotype (Table 5) are in the first top two pathways in addition to the path-

ways of ATP and NADH production that could be linked to acetate utilization such as ‘Glycol-

ysis / Gluconeogenesis’; ‘Citrate cycle’, ‘Pentose phosphate pathway’. Some pathways of

Table 5 are also found in the balance state, which reflects that the dark-light perturbation

affects housekeeping genes also found in Gi0.

In summary, our comparative analysis of the pathways of Gi2 suggests that the dark pheno-

type is more stressful than the light growth mode in the tested conditions. The same conclu-

sion was also found below when comparing the agar versus liquid growth mode above.

Therefore, even though the samples were analyzed when the number of cells per unit (ml or

colony) was roughly the same (between 5x105 and 5x106 cells), it is clear that the agar and the

dark growth modes were not optimized in terms of cultivation.

Analysis of the 100 genes contributing the most to agar/liquid and dark/

light phenotype

First constraint. In addition to ranking KEGG pathways according to their Gi1 and Gi2

values to define the biological pathways most important for a specific phenotype, it is also pos-

sible to quantify which individual genes contribute most to the phenotypes. Most of the 100

genes that significantly contribute to the phenotype of the agar-grown samples have unknown

function (S3 Fig). Some of those with identified functions could be grouped into categories

(Fig 3A). Transcripts related to Fe (IRT1, FER2, FEA2) limitation are found with IRT1 (iron-

nutrition responsive ZIP transporter family) at the very top of the list of the first 100 most con-

tributing genes (S3 Fig) for the agar-grown phenotype. We can also notice transcripts encod-

ing various transporters: members of the PTB family (PTB12, 5), for PO4
3- (Pi) uptake coupled

with Na+ transport, and others transporters (NAR1.2 for nitrate, XUV5 for xanthine, uracil,

vitamin C). The increased weight of these transcripts could indicate limitations in Pi and Fe in

the agar-grown samples. As a matter of fact, the LHCSR2 transcript encoding an antenna pro-

tein activated upon excess of light, iron, copper, and phosphate deficiencies [31–34], is found

as well asMSD3. This gene encodes Mn superoxide dismutase whose transcription is increased

upon iron deficiency [35]. At last, transcripts specific of gamete/zygote are found [36], which

could also indicate that the agar-type of growth represents a stressful condition, where the pro-

cess of sexual differentiation starts. In conclusion, this analysis suggests that samples grown on

agar suffer from nutrient deficiency which in turns provokes the activation of stress-related

genes in the conditions tested. These results suggest that the colonies already suffered from

nutrient deficiency when they were picked up (10 days growth in the light or 3 weeks growth

in the dark). This implies that an optimization of the cultivation medium in terms of iron and

phosphate concentrations could be useful to improve growth on agar.

For the liquid-grown samples (Fig 3B and S4 Fig), many transcripts of light-harvesting

complex I (LHCA1, 2, 3, 4, 5, 6, 7 and 8) and complex II (LHCBM1, 2, 3, 4, 5, 6, 7, 8 and 9,

LHCB4, 5) are present.

Second constraint. Fig 4 describes transcripts with assigned function amongst the first

100 genes contributing the most to the dark-grown phenotype (Fig 4A) and to the light-pheno-

type (Fig 4B) (the complete list of the first 100 genes is found in S5 and S6 Figs). Two genes

encoding proteins with putative haloperoxidase activity (Cre03.g177250 and Cre03.g177300)
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Fig 3. Genes with identified function among the first 100 genes in agar- and liquid- grown samples. (A) agar-grown samples. (B) liquid-grown

samples.

https://doi.org/10.1371/journal.pone.0195142.g003
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Fig 4. Genes with identified function among the first 100 genes in dark- and light- grown samples. (A) dark-grown samples. (B) light-grown samples.

https://doi.org/10.1371/journal.pone.0195142.g004
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are found at the very top of the list of the 100 genes for the dark-grown phenotype. In addition,

stress related genes are found: the transcripts of three isoforms of the heat shock protein

HSP22 contribute to the dark-grown phenotype (Fig 4A). The HSP22C isoform is targeted to

mitochondria while HSP22E and F are targeted to chloroplast when using Predalgo for predic-

tion [37], suggesting proteins modifications inside the chloroplast and mitochondria. Tran-

scripts encoding transporters are also found important to describe the dark-grown samples.

Indeed, transcripts encoding transporters for SO4
2- are found (SLT1 and SLT2) as well as

extracellular arylsulfatase (ARS1), which is typical of cells experiencing low SO4
2- availability

[38], as also pointed out by the pathway analysis where sulfur metabolism is found important

for the dark-grown samples.

The light-grown phenotype (Fig 4B) is characterized by transcripts encoding proteins

involved in iron homeostasis, transporters, stress-related response and low CO2 availability,

which is typical of air-grown cultures where CO2 is limiting [39]. In conclusion, the analysis of

the individual genes of the second constraint suggests that the cultivation medium could be

improved in terms of SO4 or CO2 availability for the dark-grown samples and the light-grown

samples respectively.

Photosynthesis genes are thus predominant in the liquid phenotype (Fig 3B and S4 Fig),

much more than in the light phenotype (Fig 4B and S5 Fig). We looked back at the raw data of

the genes involved in photosynthesis in the top 100 genes most important for the liquid pheno-

type (S4 Fig) and report in S7 Fig the log2 FPKM values of these genes in the different types

of samples (AL, AD, LL, LD). All of the photosynthetic transcripts are in higher amounts in

the conditions liquid@light (LL) and liquid@dark (LD) compared to agar@light (AL) and

agar@dark (AD). These results are thus in agreement with the surprisal analysis results, which

highlights these genes as important to explain the liquid phenotype, irrespective of the pres-

ence or absence of light. This suggests that the photosynthetic genes are not upregulated in AL

samples as much as in the LL samples because the cells forming the colonies are not all photo-

synthesizing: cells at the surface are exposed to the light but cells inside the colonies do not

receive or receive less light. A part of the cells of the colonies probably turn to a heterotrophic

growth mode and become stressed because of depletion of acetate and other nutrients. Con-

cerning the presence of the photosynthetic transcripts in the LD condition, it is established

that chlorophylls are synthesized in the dark [23,28], which goes hand in hand with the pres-

ence of the transcripts encoding proteins associated with them (LHCA and LHCB) and tran-

scripts encoding structural proteins of PSI and PSII.

Comparison of the surprisal and statistical analysis phenotype

characterization

We also tested whether K-means clustering of expression values as implemented in the MeV

software package [25] could obtain a similar separation of phenotypes (Fig 5). Cluster analysis

on mean centered ln(FPKM) values of the 38 samples is statistically meaningful for four

groups. The four groups (Fig 5A) correspond to agar upregulated (cluster 1, black), dark-upre-

gulated (cluster 2, blue), light-upregulated (cluster 3, grey) and liquid-upregulated (cluster 4,

green). The top 250 genes contributing most to a specific phenotype determined by the sur-

prisal analysis correspond for more than 80% to clusters corresponding to the same phenotype

(Fig 5B) determined by K-means clustering. K-means clustering and surprisal analysis there-

fore leads to similar phenotypes. The difference is that surprisal analysis provides a thermody-

namical analysis of the phenotypes, that are characterized by the changes that they induce on

the free energy compared to the balance state. K-means clustering results in mutually exclusive
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lists, while for surprisal analysis the constraints describe the contribution of all genes to that

constraint, but with different weights (the values of Giα, see Material and methods).

We also compared the top 250 contributing genes to the first two constraints with the sig-

nificantly differentially expressed genes obtained by Differential Gene Expression (DGE) using

an EdgeR test [24] as implemented by CLC Genomics Workbench (S8 Fig). Overall, we get a

large overlap between the top 250 genes that characterized phenotypes identified in surprisal

analysis and the differentially expressed genes of the corresponding growth conditions.

Fig 5. Comparison of top-contributing genes according to surprisal analysis and K-means clustering of transcripts. (A) Centroid plots with mean and standard

deviation of the expression values [Ln(meancenteredFPKM)] of the different genes belonging to the different clusters for each sample. Agar-upregulated (cluster 1,

black), dark-upregulated (cluster 2, blue), light-upregulated (cluster 3, grey) and liquid-upregulated (cluster 4, green). (B) Cumulative barplot describing how many of

the 250 most contributing genes to the different phenotypes described according to the first 2 constraints (see Fig 1) belong to the 4 different clusters according to K-

means clustering. The same color code as in (A) is used for representing the samples corresponding to the different phenotypes.

https://doi.org/10.1371/journal.pone.0195142.g005
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Conclusions

Surprisal analysis of transcriptomics data obtained from Chlamydomonas samples cultivated

in four different conditions (agar@dark, agar@light, liquid@dark, liquid@light) and in two dif-

ferent laboratories identifies two specific constraints that disentangle the effects on the gene

expression levels of the agar/liquid and dark/light conditions. The meta-analysis of the pheno-

types identified by the constraints resolve the biological processes specifically activated under

these two different sets of conditions. Biological processes are resolved by pathway analysis

which is efficient, but has some limitations as only 3145 genes on the 15,143 protein-coding

gene predictions [2] are categorized into KEGG pathways. Thus, the individual list of the 100

genes contributing most to a phenotype is also a valuable tool to understand the constraints.

As a matter of fact, the two genes Cre03.g177250 and Cre03.g177300 encoding putative halo-

peroxidase do not fall into any KEGG pathway. Comparison between results obtained by sur-

prisal analysis with those obtained by purely classical approaches (K-means clustering and

DGE analysis) concur with the results of the surprisal analysis.

In conclusion, our results open the way to a more detailed characterization of the less-stud-

ied modes of growth, dark and agar, which are emerging as promising for biotechnological

purposes in the field of solid-state photobioreactors and growth in fermenters. We show that

these two conditions are more stressful than light or liquid cultivation modes in the tested

experimental setups. One would now aim to find experimental setups where parameters like

medium composition could be modified in such a way that these two conditions could not be

differentiated from the light and liquid modes on the level of nutrient related pathways and

genes. In addition, as we have demonstrated that the pipeline developed for the analysis of

Chlamydomonas gene expression by surprisal analysis can be used on data sets coming from

different laboratories and reference strains, we are confident that our method could be a

method of choice in future investigations aiming at disentangling specific constraints and phe-

notypes from large data sets of different origins.
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4. Benstein RM, Çebi Z, Podola B, Melkonian M. Immobilized growth of the peridinin-producing marine

dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Mar Biotechnol. 2014; 16: 621–8.

https://doi.org/10.1007/s10126-014-9581-0 PMID: 24939718
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