[en] We examined participants’ strategy choices and metacognitive judgments during arithmetic problem-solving. Metacognitive judgments were collected either prospectively or retrospectively. We tested whether metacognitive judgments are related to strategy choices on the current problems and on the immediately following problems, and age-related differences in relations
between metacognition and strategy choices. Data showed that both young and older adults were able to make accurate retrospective, but not prospective, judgments. Moreover, the accuracy of retrospective judgments was comparable in young and older adults when participants had to select and execute the better strategy. Metacognitive accuracy was even higher in older adults when participants had to only select the better strategy. Finally, low-confidence judgments on current items were more frequently followed by better strategy selection on immediately succeeding items than high-confidence judgments in both young and older adults. Implications of these findings to further our understanding of age-related differences and similarities in adults’ metacognitive monitoring and metacognitive regulation for strategy selection in the context of arithmetic problem solving are discussed.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Geurten, Marie ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie
Lemaire, Patrick
Language :
English
Title :
Metacognition for strategy selection during arithmetic problem-solving in young and older adults
Publication date :
2019
Journal title :
Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition
ISSN :
1382-5585
eISSN :
1744-4128
Publisher :
Taylor & Francis, United Kingdom
Volume :
26
Issue :
3
Pages :
424-446
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ANR - Agence Nationale de la Recherche Marie-Curie Cofund Program
Alter, A. L., & Oppenheimer, D. M., (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13, 219–235. doi:10.1177/1088868309341564
Ardiale, E., & Lemaire, P. (2012). Within-item strategy switching: An age comparative study in adults. Psychology and Aging, 27, 1138–1151. doi:10.1037/a0027772
Ardiale, E., & Lemaire, P. (2013). Effects of execution duration on within-item strategy switching in young and older adults. Journal of Cognitive Psychology, 25, 464–472. doi:10.1080/20445911.2013.789854
Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In: P. B., Baltes & M. M., Baltes (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 1–34). New York, NY: Cambridge University Press.
Besken, M., & Mulligan, N. (2013). Easily perceived, easily remembered? Perceptual interference produces a double dissociation between metamemory and memory performance. Memory & Cognition, 41, 897–903. doi:10.3758/s13421-013-0307-8
Bunnell, J. K., Baken, D. M., & Richards-Ward, L. A. (1999). The effect of age on metamemory for working memory. New Zealand Journal of Psychology, 28, 23–29.
Castel, A., Middlebrooks, C., & McGillivray, S. (2016). Monitoring memory in old age: Impaired, spared, and aware. In J., Dunlosky, S. K., Tauber (Eds.), The Oxford handbook of metamemory.New York: Oxford University Press (pp. 463–483).
Cohen, J., (1988). Statistical power analysis for the Behavioral, Sciences. Hillsdale, NJ: Erlbaum
Deltour, J. (1993). Echelle de vocabulaire de Mill Hill de JC Raven. In: Adaptation française et normes européennes du Mill Hill et du Standard Progressive Matrices de Raven (PM38). Braine-le-Château: Editions l’application des techniques modernes.
Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6, 274–290. doi:10.1177/1745691611406920
Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology. doi:10.3389/fpsyg.2014.00781
Dodson, C. (2017). Aging and memory. In: J. H., Byrne (Ed.), Learning and memory: A comprehensive reference (Vol. 2, pp. 403–421). Oxford, UK: Academy Press.
Dunlosky, J., & Connor, L. T. (1997). Age differences in the allocation of study time account for age differences in memory performance. Memory & Cognition, 25, 691–700. doi:10.3758/bf03211311
Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks, CA: Sage Publications, Inc.
Eakin, D. K., Hertzog, C., & Harris, W. (2014). Age invariance in semantic and episodic metamemory: Both younger and older adults provide accurate feeling-of-knowing for names of faces. Aging, Neuropsychology, and Cognition, 21, 27–51. doi:10.1080/13825585.2013.775217
Fleming, S. M., & Lau, H. C. (2014). How to measure metacognition. Frontiers in human neuroscience. doi:10.3389/fnhum.2014.00443
Fleming, S. M., Massoni, S., Gajdos, T., & Vergnaud, J.-C. (2016). Metacognition about the past and future: Quantifying common and distinct influences on prospective and retrospective judgments of self-performance. Neuroscience of Consciousness. doi:10.1093/nc/niw018
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12, 189–198.
French, J. W., Ekstrom, R. B., & Price, L. A. (1963). Kit of reference tests for cognitive factors. Princeton, NJ: Educational Testing Service.
Galvin, S. J., Podd, J. V., Drga, V., & Whitmore, J. (2003). Type 2 tasks in the theory of signal detectability: Discrimination between correct and incorrect decisions. Psychonomic Bulletin & Review, 10, 843–876. doi:10.3758/bf03196546
Geurten, M., & Lemaire, P. (2017). Age-related differences in strategic monitoring during arithmetic problem solving. Acta Psychologica, 180, 105–116. doi:10.1016/j.actpsy.2017.09.005
Geurten, M., & Meulemans, T. (2017). The effect of feedback on children’s metacognitive judgments: A heuristic account. Journal of Cognitive Psychology, 29, 184–201. doi:10.1080/20445911.2016.1229669
Glisky, E. L. (2007). Changes in cognitive function in human aging. In: D. R., Riddle (Ed.), Brain aging: Models, methods, and mechanisms (pp. 3–20). Boca Raton, FL: CRC Press.
Graziano, M., Parra, L. C., & Sigman, M., (2014). Neural correlates of perceived confidence in a partial report paradigm. Journal of Cognitive Neuroscience, 27, 1090–1103. doi:10.1162/jocn_a_00759
Halamish, V., McGillivray, S., & Castel, A. D. (2011). Monitoring one’s own forgetting in younger and older adults. Psychology and Aging, 26, 631–635. doi:10.1037/a0022852
Hertzog, C., & Dunlosky, J. (2011). Metacognition in later adulthood: Spared monitoring can benefit older adults’ self-regulation. Current Directions in Psychological Science, 20, 167–173. doi:10.1177/0963721411409026
Hertzog, C. 2016. Aging and metacognitive control. J., Dunlosky & S. K., Tauber Eds., Oxford handbook of metacognition, Oxford, UK: Oxford University Press.
Hertzog, C., Kidder, D. P., Powell-Moman, A., & Dunlosky, J. (2002). Aging and monitoring associative learning: Is monitoring accuracy spared or impaired? Psychology and Aging, 17, 209–225. doi:10.1037/0882-7974.17.2.209
Hertzog, C., Touron, D. R., & Hines, J. C. (2007). Does a time-monitoring deficit influence older adults’ delayed retrieval shift during skill acquisition? Psychology and Aging, 22, 607–624. doi:10.1037/0882-7974.22.3.607
Hines, J. C., Touron, D. R., & Hertzog, C. (2009). Metacognitive influences on study time allocation in an associative recognition task: An analysis of adult age differences. Psychology and Aging, 24, 462–475. doi:10.1037/a0014417
Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal Of Problem Solving, 7, 2–9. doi:10.7771/1932-6246.1167
Kadosh, R. C., & Dowker, A. (2015). The Oxford handbook of numerical cognition. USA: Oxford University Press.
Kelemen, W., Frost, P., & Weaver, C. (2000). Individual differences in metacognition: Evidence against a general metacognitive ability. Memory & Cognition, 28, 92–107. doi:10.3758/BF03211579
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023.
Kimball, D. R., Smith, T. A., & Muntean, W. J. (2012). Does delaying judgments of learning really improve the efficacy of study decisions? Not so much. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 923–954. doi:10.1037/a0026936
Kornbrot, D. E. (2006). Signal detection theory, the approach of choice: Model-based and distribution-free measures and evaluation. Perception & Psychophysics, 68, 393–414. doi:10.3758/bf03193685
Kuhlmann, B. G., & Touron, D. R. (2011). Older adults’ use of metacognitive knowledge in source monitoring: Spared monitoring but impaired control. Psychology and Aging, 26, 143–149. doi:10.1037/a0021055
Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. New York, US: Cambridge University Press.
LeFevre, J.-A., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11, 95–132. doi:10.1207/s1532690xci1102_1
Lemaire, P. (2016). Cognitive aging: The role of strategies. London: Routledge.
Lemaire, P., Arnaud, L., & Lecacheur, M. (2004). Adults’ age-related differences in adaptivity of strategy choices: Evidence from computational estimation. Psychology and Aging, 19, 467–481. doi:10.1037/0882-7974.19.3.467
Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in problem solving: Combined influences on operator selection. Cognitive Psychology, 31, 168–217. doi:10.1006/cogp.1996.0016
Lovett, M. C., & Schunn, C. D. (1999). Task representations, strategy variability, and base-rate neglect. Journal of Experimental Psychology: General, 128, 107–130. doi:10.1037/0096-3445.128.2.107
Metcalfe, J., & Kornell, N. (2003). The dynamics of learning and allocation of study time to a region of proximal learning. Journal of Experimental Psychology: General, 132, 530–542. doi:10.1037/0096-3445.132.4.530
Metcalfe, J., & Kornell, N. (2005). A Region of Proximal Learning model of study time allocation. Journal of Memory and Language, 52, 463–477. doi:10.1016/j.jml.2004.12.001
Murayama, K., Sakaki, M., Yan, V. X., & Smith, G. M. (2014). Type I error inflation in the traditional by-participant analysis to metamemory accuracy: A generalized mixed-effects model perspective. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1287–1306. doi:10.1037/a0036914
Neches, R. (1987). Learning through incremental refinement of procedures. In: D., Klahr, P., Langley, & R., Neches (Eds.), Production system models of learning and development (pp. 163–219). Cambridge, MA: The MIT Press.
Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116. doi:10.1037/0003-066X.51.2.102
Nelson, T. O., & Leonesio, R. J. (1988). Allocation of self-paced study time and the “labor-in-vain effect.”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 676–686. doi:10.1037/0278-7393.14.4.676
Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In: R. J., Davidson, G. E., Schwartz, & D., Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (pp. 1–18). New York, NY: Plenum.
Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111, 275–279. doi:10.1016/j.cognition.2009.02.002
Pansky, A., Goldsmith, M., Koriat, A., & Pearlman-Avnion, S. (2009). Memory accuracy in old age: Cognitive, metacognitive, and neurocognitive determinants. European Journal of Cognitive Psychology, 21, 303–329. doi:10.1080/09541440802281183
Price, J., Hertzog, C., & Dunlosky, J. (2010). Self-regulated learning in younger and older adults: Does aging affect metacognitive control? Aging, Neuropsychology, and Cognition, 17, 329–359. doi:10.1080/13825580903287941
Price, J., & Murray, R. G. (2012). The region of proximal learning heuristic and adult age differences in self-regulated learning. Psychology and Aging, 27, 1120–1129. doi:10.1037/a0029860
Rhodes, M. G., & Castel, A. D. (2008). Memory predictions are influenced by perceptual information: Evidence for metacognitive illusions. Journal of Experimental Psychology: General, 137, 615–625. doi:10.1037/a0013684
Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135, 207–236. doi:10.1037/0096-3445.135.2.207
Robinson, A. E., Hertzog, C., & Dunlosky, J. (2006). Aging, encoding fluency, and metacognitive monitoring. Aging, Neuropsychology, and Cognition, 13, 458–478. doi:10.1080/13825580600572983
Sacher, M., Isingrini, M., & Taconnat, L. (2013). Effects of aging and divided attention on episodic feeling-of-knowing accuracy. Acta Psychologica, 144, 258–263. doi:10.1016/j.actpsy.2013.07.004
Schmitt, M. C., & Sha, S. (2009). The developmental nature of meta-cognition and the relationship between knowledge and control over time. Journal of Research in Reading, 32, 254–271. doi:10.1111/j.1467-9817.2008.01388.x
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Psychology Software Incorporated,Pittsburgh, PA.
Siedlecka, M., Paulewicz, B., & Wierzchoń, M. (2016). But I was so sure! Metacognitive judgments are less accurate given prospectively than retrospectively. Frontiers in Psychology, 7, 218. doi:10.3389/fpsyg.2016.00218
Siegler, R. S. (2007). Cognitive variability. Developmental Science, 10, 104–109. doi:10.1111/j.1467-7687.2007.00571.x
Siegler, R. S., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. Advances in child development and behaviour, 33, 1–44.
Siegler, R. S., & Shipley, C. (1995). Variation, selection, and cognitive change. In: T. J. S. G. S., Halford (Ed.), Developing cognitive competence: New approaches to process modeling (pp. 31–76). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 204–221. doi:10.1037/0278-7393.26.1.204
Souchay, C., & Isingrini, M. (2004). Age related differences in metacognitive control: Role of executive functioning. Brain and Cognition, 56, 89–99. doi:10.1016/j.bandc.2004.06.002
Stuss, D. T., Shallice, T., Alexander, M. P., & Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191–212. doi:10.1111/j.1749-6632.1995.tb38140.x
Thiede, K. W., & Dunlosky, J. (1999). Toward a general model of self-regulated study: An analysis of selection of items for study and self-paced study time. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1024–1037. doi:10.1037/0278-7393.25.4.1024
Thomas, A. K., Bulevich, J. B., & Dubois, S. J. (2011). Context affects feeling-of-knowing accuracy in younger and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 96–108. doi:10.1037/a0021612
Tullis, J. G., & Benjamin, A. S. (2012). Consequences of restudy choices in younger and older learners. Psychonomic Bulletin & Review, 19, 743–749. doi:10.3758/s13423-012-0266-2
Uittenhove, K., & Lemaire, P. (2015). The effects of aging on numerical cognition. In: R. C., Kadosh & A., Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 345–366). Oxford, UK: Oxford University Press.
van de Schoot, R., & Depaoli, S. (2014). Bayesian analyses: Where to start and what to report. European Health Psychologist, 16, 75–84.
von der Linden, N., Löffler, E., & Schneider, W. (2016). Effects of a short strategy training on metacognitive monitoring across the life-span. Frontline Learning Research, 3, 37–55. doi:10.14786/flr.v3i4.196