hydrogeophysics; surface nuclear magnetic resonance; multi-central-loop; joint inversion
Abstract :
[en] A multi-central loop configuration has been studied through forward and inverse modelling of synthetics and real data. This set-up takes advantage of the multichannel features of the NMR device and consists of using several (2 to 3) additional receiver loops displayed concentrically with the main transmitter/receiver loop, which all record the NMR signal simultaneously within a single acquisition. If the loop diameters are chosen appropriately, the kernel sensitivity distributions for each receiver loop can show complementary features. Inverting simultaneously the data sets obtained through each different receiver loop can then enhance the accuracy of the final model. To do so, a 1D QT inversion scheme in the frequency domain dedicated to the inversion of multiple data sets is being used. One challenging feature is to adapt the regularization of the inverse process so as to handle correctly the noise originating from different data sets. The efficiency of this multi-central loop acquisition set-up and procedure is being assessed through the forward and inverse modelling of several scenarios implying varying aquifer characteristics. Finally a field case is being presented that was conducted on a low noise level site located in Germany, where conditions were favourable to the implementation and testing of circular multi-central loop configurations.We also introduce a new method for determining NMR parameters, named the prediction-focused-approach (PFA), that is based on statistical analysis of a large number of simple models. We observe, using synthetic examples, that the effciency of the method benefits from the use of the multi-central-loop configurations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kremer, Thomas ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée