Chen, M. S. Inducible direct plant defense against insect herbivores: a review Insect Sci. 2008, 15, 101-114 10.1111/j.1744-7917.2008.00190.x
Mithöfer, A.; Boland, W. Plant defense against herbivores: chemical aspects Annu. Rev. Plant Biol. 2012, 63, 431-450 10.1146/annurev-arplant-042110-103854
Koornneef, A.; Pieterse, C. M. Cross talk in defense signaling Plant Physiol. 2008, 146, 839-844 10.1104/pp.107.112029
Thaler, J. S.; Humphrey, P. T.; Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk Trends Plant Sci. 2012, 17, 260-270 10.1016/j.tplants.2012.02.010
Jaouannet, M.; Rodriguez, P. A.; Thorpe, P.; Lenoir, C. J.; Macleod, R.; Escuderomartinez, C.; Bos, J. I. Plant immunity in plant-aphid interactions Front. Plant Sci. 2014, 5, 663 10.3389/fpls.2014.00663
Donovan, M. P.; Nabity, P. D.; Delucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory Arthropod Plant Interact. 2013, 7, 45-52 10.1007/s11829-012-9220-5
De Vos, M.; Van Oosten, V. R.; Van Poecke, R. M. P.; Pozo, M. J.; Van Pelt, J. A.; Mueller, M. J.; Buchala, A. J.; Metraux, J.-P.; Van Loon, L. C.; Dicke, M.; Pieterse, C. M. J. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack Mol. Plant-Microbe Interact. 2005, 18, 923-937 10.1094/MPMI-18-0923
Coppola, V.; Coppola, M.; Rocco, M.; Digilio, M. C.; D'Ambrosio, C.; Renzone, G.; Martinelli, R.; Scaloni, A.; Pennacchio, F.; Rao, R.; Corrado, G. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response BMC Genomics 2013, 14, 515 10.1186/1471-2164-14-515
Mohase, L.; van der Westhuizen, A. J. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction J. Plant Physiol. 2002, 159, 585-590 10.1078/0176-1617-0633
de Ilarduya, O. M.; Xie, Q.; Kaloshian, I. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions Mol. Plant-Microbe Interact. 2003, 16, 699-708 10.1094/MPMI.2003.16.8.699
Zhu-Salzman, K.; Salzman, R. A.; Ahn, J. E.; Koiwa, H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid Plant Physiol. 2004, 134, 420-431 10.1104/pp.103.028324
Moran, P. J.; Thompson, G. A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways Plant Physiol. 2001, 125, 1074-1085 10.1104/pp.125.2.1074
Zhu, F.; Poelman, E. H.; Dicke, M. Insect herbivore-associated organisms affect plant responses to herbivory New Phytol. 2014, 204, 315-321 10.1111/nph.12886
Alborn, H.; Turlings, T.; Jones, T.; Stenhagen, G.; Loughrin, J.; Tumlinson, J. An elicitor of plant volatiles from beet armyworm oral secretion Science 1997, 276, 945-949 10.1126/science.276.5314.945
Halitschke, R.; Schittko, U.; Pohnert, G.; Boland, W.; Baldwin, I. T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses Plant Physiol. 2001, 125, 711-717 10.1104/pp.125.2.711
Alborn, H. T.; Hansen, T. V.; Jones, T. H.; Bennett, D. C.; Tumlinson, J. H.; Schmelz, E. A.; Teal, P. E. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 12976-12981 10.1073/pnas.0705947104
Tian, D.; Peiffer, M.; Shoemaker, E.; Tooker, J.; Haubruge, E.; Francis, F.; Luthe, D. S.; Felton, G. W. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant PLoS One 2012, 7 e36168 10.1371/journal.pone.0036168
Louis, J.; Peiffer, M.; Ray, S.; Luthe, D. S.; Felton, G. W. Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize New Phytol. 2013, 199, 66-73 10.1111/nph.12308
Miles, P. W. Plant-sucking bugs can remove the contents of cells without mechanical damage Experientia 1987, 43, 937-939 10.1007/BF01951678
Miles, P. W. Aphid saliva Biol. Rev. Cambridge Philos. Soc. 1999, 74, 41-85 10.1017/S0006323198005271
Botha, A. M.; Lacock, L.; van Niekerk, C.; Matsioloko, M. T.; du Preez, F. B.; Loots, S.; Venter, E.; Kunert, K. J.; Cullis, C. A. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. 'TugelaDN' a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep. 2006, 25, 41-54 10.1007/s00299-005-0001-9
De Vos, M.; Jander, G. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana Plant, Cell Environ. 2009, 32, 1548-1560 10.1111/j.1365-3040.2009.02019.x
Prince, D. C.; Drurey, C.; Zipfel, C.; Hogenhout, S. A. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis Plant Physiol. 2014, 164, 2207-2219 10.1104/pp.114.235598
van Bel, A. J.; Will, T. Functional evaluation of proteins in watery and gel saliva of aphids Front. Plant Sci. 2016, 7, 1840 10.3389/fpls.2016.01840
Ma, R.; Chen, J. L.; Cheng, D. F.; Sun, J. R. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva J. Agric. Food Chem. 2010, 58, 2410-2418 10.1021/jf9037248
Bos, J. I.; Prince, D.; Pitino, M.; Maffei, M. E.; Win, J.; Hogenhout, S. A. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid) PLoS Genet. 2010, 6 e1001216 10.1371/journal.pgen.1001216
Rodriguez, P. A.; Stam, R.; Warbroek, T.; Bos, J. I. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities Mol. Plant-Microbe Interact. 2014, 27, 30-39 10.1094/MPMI-05-13-0156-R
Blackman, R. L.; Eastop, V. F. Aphids on the world's crops: an identification and information guide; John Wiley & Sons Ltd.: New York, 2000.
Zhao, L. Y.; Chen, J. L.; Cheng, D. F.; Sun, J. R.; Liu, Y.; Tian, Z. Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses Crop Prot. 2009, 28, 435-442 10.1016/j.cropro.2009.01.005
Rao, S. A.; Carolan, J. C.; Wilkinson, T. L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins PLoS One 2013, 8 e57413 10.1371/journal.pone.0057413
Ashford, D. A.; Smith, W. A.; Douglas, A. E. Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum J. Insect Physiol. 2000, 46, 335-341 10.1016/S0022-1910(99)00186-9
Vandermoten, S.; Harmel, N.; Mazzucchelli, G.; De Pauw, E.; Haubruge, E.; Francis, F. Comparative analyses of salivary proteins from three aphid species Insect Mol. Biol. 2014, 23, 67-77 10.1111/imb.12061
Liu, X.; Meng, J.; Starkey, S.; Smith, C. M. Wheat gene expression is differentially affected by a virulent Russian wheat aphid biotype J. Chem. Ecol. 2011, 37, 472-482 10.1007/s10886-011-9949-9
Chen, Z.; Zheng, Z.; Huang, J.; Lai, Z.; Fan, B. Biosynthesis of salicylic acid in plants Plant Signaling Behav. 2009, 4, 493-496 10.4161/psb.4.6.8392
Wyatt, I.; White, P. Simple estimation of intrinsic increase rates for aphids and tetranychid mites J. Appl. Ecol. 1977, 14, 757-766 10.2307/2402807
Bruce, T. J. A.; Martin, J. L.; Pickett, J. A.; Pye, B. J.; Smart, L. E.; Wadhams, L. J. cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae) Pest Manage. Sci. 2003, 59, 1031-1036 10.1002/ps.730
Tjallingii, W. F.; Esch, T. H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals Physiol. Entomol. 1993, 18, 317-328 10.1111/j.1365-3032.1993.tb00604.x
Sarria, E.; Cid, M.; Garzo, E.; Fereres, A. Excel Workbook for automatic parameter calculation of EPG data Comput. Electron. Agr. 2009, 67, 35-42 10.1016/j.compag.2009.02.006
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔCT method Methods 2001, 25, 402-408 10.1006/meth.2001.1262
Kerchev, P. I.; Karpińska, B.; Morris, J. A.; Hussain, A.; Verrall, S. R.; Hedley, P. E.; Fenton, B.; Foyer, C. H.; Hancock, R. D. Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis Antioxid. Redox Signaling 2013, 18, 2091-2105 10.1089/ars.2012.5097
Stewart, S. A.; Hodge, S.; Bennett, M.; Mansfield, J. W.; Powell, G. Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation, aphid density and the genotypes of both plant and insect Arthropod Plant Interact. 2016, 10, 41-53 10.1007/s11829-015-9406-8
Yan, Y.; Zhang, H. J.; Yang, Y. T.; Zhang, Y.; Guo, J. Y.; Liu, W. X.; Wan, F. H. Plant defense responses induced by Bemisia tabaci Middle East-Asia Minor 1 salivary components Entomol. Exp. Appl. 2016, 159, 287-297 10.1111/eea.12423
Kempema, L. A.; Cui, X.; Holzer, F. M.; Walling, L. L. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids Plant Physiol. 2007, 143, 849-865 10.1104/pp.106.090662
Zhang, P. J.; Huang, F.; Zhang, J. M.; Wei, J. N.; Lu, Y. B. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk Sci. Rep. 2015, 5, 9354 10.1038/srep09354
Rodriguezsaona, C. R.; Musser, R. O.; Vogel, H.; Hummusser, S. M.; Thaler, J. S. Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds J. Chem. Ecol. 2010, 36, 1043-1057 10.1007/s10886-010-9854-7
Thaler, J. S.; Stout, M. J.; Karban, R.; Duffey, S. S. Jasmonate-mediated induced plant resistance affects a community of herbivores Ecol. Entomol. 2001, 26, 312-324 10.1046/j.1365-2311.2001.00324.x
Boughton, A. J.; Hoover, K.; Felton, G. W. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid Entomol. Exp. Appl. 2006, 120, 175-188 10.1111/j.1570-7458.2006.00443.x
Ellis, C.; Karafyllidis, I.; Turner, J. G. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae Mol. Plant-Microbe Interact. 2002, 15, 1025-1030 10.1094/MPMI.2002.15.10.1025
Züst, T.; Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids Nat. Plants 2016, 2, 15206 10.1038/nplants.2015.206
Zarate, S. I.; Kempema, L. A.; Walling, L. L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses Plant Physiol. 2007, 143, 866-875 10.1104/pp.106.090035
Zehnder, G. W.; Nichols, A. J.; Edwards, O. R.; Ridsdill-Smith, T. J. Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins Entomol. Exp. Appl. 2001, 98, 259-269 10.1046/j.1570-7458.2001.00782.x
Goggin, F. L. Plant-aphid interactions: molecular and ecological perspectives Curr. Opin. Plant Biol. 2007, 10, 399-408 10.1016/j.pbi.2007.06.004
Zhu, J.; Park, K. C. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata J. Chem. Ecol. 2005, 31, 1733-1746 10.1007/s10886-005-5923-8
Dewhirst, S. Y.; Pickett, J. A. Production of semiochemical and allelobiotic agents as a consequence of aphid feeding Chemoecology 2010, 20, 89-96 10.1007/s00049-009-0032-8
Liu, Y.; Wang, W. L.; Guo, G. X.; Ji, X. L. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae Entomol. Exp. Appl. 2009, 130, 215-221 10.1111/j.1570-7458.2008.00822.x
Botha, C. E. J.; Matsiliza, B.; Bornman, C. H. Reduction in transport in wheat (Triticum aestivum) is caused by sustained phloem feeding by the Russian wheat aphid (Diuraphis noxia) S. Afr. J. Bot. 2004, 70, 249-254 10.1016/S0254-6299(15)30242-8
Kuśnierczyk, A.; Winge, P.; Jørstad, T. S.; Troczyńska, J.; Rossiter, J. T.; Bones, A. M. Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack Plant, Cell Environ. 2008, 31, 1097-1115 10.1111/j.1365-3040.2008.01823.x
Brudenell, A. J. P.; Griffiths, H.; Rossiter, J. T.; Baker, D. A. The phloem mobility of glucosinolates J. Exp. Bot. 1999, 50, 745-756 10.1093/jxb/50.335.745
Kehr, J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects J. Exp. Bot. 2006, 57, 767-774 10.1093/jxb/erj087
Atamian, H. S.; Chaudhary, R.; Cin, V. D.; Bao, E.; Girke, T.; Kaloshian, I. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity Mol. Plant-Microbe Interact. 2013, 26, 67-74 10.1094/MPMI-06-12-0144-FI
Yin, C.; Hulbert, S. Prospects for functional analysis of effectors from cereal rust fungi Euphytica 2011, 179, 57-67 10.1007/s10681-010-0285-x
Upadhyaya, N. M.; Mago, R.; Staskawicz, B. J.; Ayliffe, M. A.; Ellis, J. G.; Dodds, P. N. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat Mol. Plant-Microbe Interact. 2014, 27, 255-264 10.1094/MPMI-07-13-0187-FI
Cheng, Y.; Wu, K.; Yao, J.; Li, S.; Wang, X.; Huang, L.; Kang, Z. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity Environ. Microbiol. 2016, 19, 1717-1729 10.1111/1462-2920.13610