[en] Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a two-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species (Lolium perenne L., Taraxacum sp., and Trifolium repens L.). Ecosystem photosynthetic performance was estimated from measurements performed on the three dominant grassland species weighed based on their relative abundance. In addition, monitoring CO2 fluxes was performed by eddy covariance. The highest decrease in photosynthetic performance was detected in summer, when environmental constraints were combined. Dicot species (Taraxacum sp. and T. repens) presented the strongest capacity to up-regulate PSI and exhibited the highest electron transport efficiency under stressful environmental conditions compared with L. perenne. The decline in ecosystem photosynthetic performance did not lead to a reduction in gross primary productivity, likely because increased light energy was available under these conditions. The carbon amounts fixed at light saturation were not influenced by alterations in photosynthetic processes, suggesting photosynthesis was not impaired. Decreased photosynthetic performance was associated with high respiration flux, but both were influenced by temperature. Our study revealed variation in photosynthetic performance of a grassland ecosystem responded to environmental constraints, but alterations in photosynthetic processes appeared to exhibit a negligible influence on ecosystem CO2 fluxes.
Digrado, Anthony ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Gourlez de la Motte, Louis ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Bachy, Aurélie ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Mozaffar, Ahsan
Schoon, Niels
Bussotti, Filippo
Amelynck, Crist
Dalcq, Anne-Catherine ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Modélisation et développement
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Aubinet, Marc ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Heinesch, Bernard ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
du Jardin, Patrick ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Delaplace, Pierre ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Adams, W. W., andDemmig-Adams, B. (2004). “Chlorophyll fluorescence as a tool to monitor plant response to the environment in Papageorgiou,” in Chlorophyll Chlorophyll Fluorescence: A Signature of Photosynthesis, ed G. C. Govindjee (Dordrecht: Springer), 583–604.
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396. doi: 10.1104/pp.106.082040
Ashraf, M., and Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51, 163–190. doi: 10.1007/s11099-013-0021-6
Atkin, O. K., and Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351. doi: 10.1016/S1360-1385(03)00136-5
Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H., and Pons, T. L. (1997). Leaf respiration in light and darkness. A comparison of slow- and fast-growing Poa species. Plant Physiol. 113, 961–965.
Bai, J., Xu, D. H., Kang, H. M., Chen, K., and Wang, G. (2008). Photoprotective function of photorespiration in Reaumuria soongorica during different levels of drought stress in natural high irradiance. Photosynthetica 46, 232–237. doi: 10.1007/s11099-008-0037-5
Bertolde, F. Z., Almeida, A.-A. F., Pirovani, C. P., Gomes, F. P., Ahnert, D., Baligar, V. C., et al. (2012). Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50, 447–457. doi: 10.1007/s11099-012-0052-4
Bielczynski, L. W., Schansker, G., and Croce, R. (2016). Effect of light acclimation on the organization of photosystemii super- and sub-complexes in Arabidopsis thaliana. Front. Plant Sci. 7:105. doi: 10.3389/fpls.2016.00105
Bollig, C., and Feller, U. (2014). Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes. Agric. Ecosyst. Environ. 188, 212–220. doi: 10.1016/j.agee.2014.02.034
Borchard, N., Schirrmann, M., von Hebel, C., Schmidt, M., Baatz, R., Firbank, L., et al. (2015). Spatio-temporal drivers of soil and ecosystemcarbon fluxes at field scale in an upland grassland in Germany. Agric. Ecosyst. Environ. 211, 84–93. doi: 10.1016/j.agee.2015.05.008
Boughalleb, F., Denden, M., and Ben Tiba, B. (2009). Photosystem II photochemistry and physiological parameters of three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress. Acta Physiol. Plant. 31, 463–476. doi: 10.1007/s11738-008-0254-3
Brestic, M., Zivcak, M., Kalaji, H. M., Carpentier, R., and Allakhverdiev, S. I. (2012). Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in TriticumaestivumL. Plant Physiol. Biochem. 57, 93–105. doi: 10.1016/j.plaphy.2012.05.012
Bussotti, F. (2004). Assessment of stress conditions in Quercus ilex L. leaves by O-J-I-P chlorophyll a fluorescence analysis. Plant Biosystem. 138, 101–109. doi: 10.1080/11263500412331283708
Bussotti, F., Desotgiu, R., Cascio, C., Pollastrini, M., Gravano, E., Gerosa, G., et al. (2011). Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ. Exp. Bot. 73, 19–30. doi: 10.1016/j.envexpbot.2010.10.022
Bussotti, F., Desotgiu, R., Pollastrini, M., and Cascio, C. (2010). The JIP test: a tool to screen the capacity of plant adaptation to climate change. Scand. J. Forest Res. 25, 43–50. doi: 10.1080/02827581.2010.485777
Bussotti, F., Strasser, R. J., and Schaub, M. (2007). Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: a review. Environ. Pollut. 147, 430–437. doi: 10.1016/j.envpol.2006. 08.036
Campos, H., Trejo, C., Peña-Valdivia, C. B., García-Nava, R., Conde-Martínez, F. V., and Cruz-Ortega, M. D. R. (2014). Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Photosynth. Res. 122, 23–39. doi: 10.1007/s11120-014-0008-6
Cascio, C., Schaub, M., Novak, K., Desotgiu, R., Bussotti, F., and Strasser, R. J. (2010). Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ. Exp. Bot. 68, 188–197. doi: 10.1016/j.envexpbot.2009.10.003
Chen, J., Luo, Y., Xia, J., Wilcox, K. R., Cao, J., Zhou, X., et al. (2017). Warming effects on ecosystem carbon fluxes are modulated by plant functional types. Ecosystems 20:515. doi: 10.1007/s10021-016-0035-6
Chen, J., Zhou, X., Wang, J., Hruska, T., Shi, W., Cao, J., et al. (2016). Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a meadow grassland on the Tibetan plateau. Ecol. Evol. 6, 675–687. doi: 10.1002/ece3.1867
Ciccarelli, D., Picciarelli, P., Bedini, G., and Sorce, C. (2016). Mediterranean sea cliff plants: morphological and physiological responses to environmental conditions. J. Plant Ecol. 9, 153–164. doi: 10.1093/jpe/rtv042
Dagnelie, P. (2013). Statistique Théorique et Appliquée, Tome 1, Statistique Descriptive et Bases de L’inférence Statistique. Bruxelles: de Boeck.
Demmig-Adams, B., and Adams, W. W. (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172, 11–21. doi: 10.1111/j.1469-8137.2006.01835.x
Derks, A., Schaven, K., and Bruce, D. (2015). Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta 1847, 468–485. doi: 10.1016/j.bbabio.2015.02.008
Desotgiu, R., Cascio, C., Pollastrini, M., Gerosa, G., Marzuoli, R., and Bussotti, F. (2012a). Short and long term photosynthetic adjustments in sun and shade leaves of Fagus sylvatica L., investigated by fluorescence transient (FT) analysis. Plant Biosyst. 146, 206–216. doi: 10.1080/11263504.2012.705350
Desotgiu, R., Pollastrini, M., Cascio, C., Gerosa, G., Marzuoli, R., and Bussotti, F. (2012b). Chlorophyll alpha fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress. Tree Physiol. 32, 976–986. doi: 10.1093/treephys/tps062
Digrado, A., Bachy, A., Mozaffar, A., Schoon, N., Dalcq, A.-C., Amelynck, C., et al. (2017). Long-term measurements of chlorophyll a fluorescence using the JIP-test show that combined abiotic stresses influence the photosynthetic performance of the perennial ryegrass (Lolium perenne L.) in a managed temperate grassland. Physiol. Plant. 161, 355–371. doi: 10.1111/ppl.12594
Feller, U. (2016). Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J. Plant Physiol. 203, 84–94. doi: 10.1016/j.jplph.2016.04.002
Fernández-Baco, L., Figueroa, M. E., Luque, T., and Davy, A. J. (1998). Diurnal and seasonal variations in chlorophyll a fluorescence in two mediterranean-grassland species under field conditions. Photosynthetica 35, 535–544. doi: 10.1023/A:1006926923293
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., et al. (2016). Car: Companion to Applied Regression. Available online at: http://www.R-project.org/(accessed March 16, 2017).
Ganjurjav, H., Gao, Q., Borjigidai, A., Guo, Y., Wan, Y., Li, Y., et al. (2014). Alpine grassland ecosystem respiration variation under irrigation in Northern Tibet. Acta Ecol. Sin. 34, 271–276. doi: 10.1016/j.chnaes.2014.07.004
Ghotbi-Ravandi, A. A., Shahbazi, M., Shariati, M., and Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. J. Agron. Crop Sci. 200, 403–415. doi: 10.1111/jac.12062
Gielen, B., Naudts, K., D’Haese, D., Lemmens, C. M., De Boeck, H. J., Biebaut, E., et al. (2007). Effects of climate warming and species richness on photochemistry of grasslands. Physiol. Plant. 131, 251–262. doi: 10.1111/j.1399-3054.2007.00951.x
Goh, C.-H., Ko, S.-M., Koh, S., Kim, Y.-J., and Bae, H.-J. (2012). Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J. Plant Biol. 55, 93–101. doi: 10.1007/s12374-011-9195-2
Goltsev, V., Zaharieva, I., Chernev, P., Kouzmanova, M., Kalaji, H. M., Yordanov, I., et al. (2012). Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim. Biophys. Acta 1817, 1490–1498. doi: 10.1016/j.bbabio.2012.04.018
Gourlez de la Motte, L., Jérôme, E., Mamadou, O., Beckers, Y., Bodson, B., Heinesch, B., et al. (2016). Carbon balance of an intensively grazed permanent grassland in southern Belgium. Agricult. Forest Meteorol. 228, 370–383. doi: 10.1016/j.agrformet.2016.06.009
Gravano, E., Bussotti, F., Strasser, R. J., Schaub, M., Novak, K., Skelly, J., et al. (2004). Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics. Physiol. Plant. 121, 620–633. doi: 10.1111/j.1399-3054.2004.00363.x
Groemping, U., and Matthias, L. (2013). Relaimpo: Relative Importance of Regressors in Linear Models. Available online at http://www.R-project.org/(Accessed March 16, 2017)
Guidi, L., and Calatayud, A. (2014). Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 103, 42–52. doi: 10.1016/j.envexpbot.2013.12.007
Heskel, M. A., Atkin, O. K., Turnbull, M. H., and Griffin, K. L. (2013). Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystemexchange. Ecosphere 4, 1–14. doi: 10.1890/ES13-00120.1
Hill, P. W., Garnett, M. H., Farrar, J., Iqbal, Z., Khalid, M., Soleman, N., et al. (2015). Living roots magnify the response of soil organic carbon decomposition to temperature in temperate grassland. Glob. Chang. Biol. 21, 1368–1375. doi: 10.1111/gcb.12784
Hoover, D. L., Knapp, A. K., and Smith, M. D. (2016). The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. J. Geophys. Res. Biogeosci. 121, 1034–1044. doi: 10.1002/2015JG003256
Husson, F., Josse, J., Le, S., and Mazet, J. (2016). FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. Available online at http://www. R-project.org/(Accessed March 16, 2017).
Jahns, P., and Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817, 182–193. doi: 10.1016/j.bbabio.2011.04.012
Janka, E., Körner, O., Rosenqvist, E., and Ottosen, C.-O. (2013). High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiol. Biochem. 67, 87–94. doi: 10.1016/j.plaphy.2013.02.025
Jedmowski, C., Bayramov, S., and Brüggemann, W. (2014). Comparative analysis of drought stress effects on photosynthesis of Eurasian and North African genotypes of wild barley. Photosynthetica 52, 564–573. doi: 10.1007/s11099-014-0064-3
Kalaji, H. M., Carpentier, R., Allakhverdiev, S. I., and Bosa, K. (2012). Fluorescence parameters as early indicators of light stress in barley. J. Photochem. Photobiol. Biol. 112, 1–6. doi: 10.1016/j.jphotobiol.2012.03.009
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38:102. doi: 10.1007/s11738-016-2113-y
Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., et al. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosyn. Res. 132, 13–66. doi: 10.1007/s11120-016-0318-y
Kataria, S., and Guruprasad, K. N. (2015). Exclusion of solar UV radiation frequently asked questions about chlorophyll fluorescence, the sequel improves photosynthetic performance and yield of wheat varieties. Plant Physiol. Biochem. 97, 400–411. doi: 10.1016/j.plaphy.2015.10.001
Lee, H.-Y., Chow, W. S., and Hong, Y.-N. (1999). Photoinactivation of photosystem II in leaves of Capsicum annuum. Physiol. Plant. 105, 376–383. doi: 10.1034/j.1399-3054.1999.105224.x
Lloyd, J., and Taylor, J. A. (1994). On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323. doi: 10.2307/2389824
Mamadou, O., Gourlez de la Motte, L., De Ligne, A., Heinesch, B., and Aubinet, M. (2016). Sensitivity of the annual net ecosystemexchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agricult. Forest Meteorol. 228–229, 360–369. doi: 10.1016/j.agrformet.2016.06.008
Massacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., Chernikova, T. N., Thor, K., et al. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem. 46, 189–195. doi: 10.1016/j.plaphy.2007.10.006
Mathur, S., and Jajoo, A. (2015). Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method. Acta Physiol. Plant. 37:121. doi: 10.1007/s11738-015-1874-z
Mathur, S., Jajoo, A., Mehta, P., and Bharti, S. (2011). Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticumaestivum). Plant Biol. 13, 1–6. doi: 10.1111/j.1438-8677.2009.00319.x
Maxwell, K., and Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jexbot/51.345.659
Menzel, U. (2015). CCP: Significance Tests for Canonical Correlation Analysis (CCA). Available online at: http://www.R-project.org/(accessed March 16, 2017).
Murchie, E. H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998. doi: 10.1093/jxb/ert208
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2012). Vegan: Community Ecology Package. Available online at http://www.R-project.org/(accessed March 16, 2017).
Osório, M. L., Osório, J., and Romano, A. (2013). Photosynthesis, energy partitioning, and metabolic adjustments of the endangered Cistaceae species Tuberaria major under high temperature and drought. Photosynthetica 51, 75–84. doi: 10.1007/s11099-012-0080-0
Oukarroum, A., El Madidi, S., and Strasser, R. J. (2016). Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. Plant Physiol. Biochem. 105, 102–108. doi: 10.1016/j.plaphy.2016.04.015
Pettigrew, W. T. (2016). Cultivar variation in cotton photosynthetic performance under different temperature regimes. Photosynthetica 54, 502–507. doi: 10.1007/s11099-016-0208-8
Pollastrini, M., Di Stefano, V., Ferretti, M., Agati, G., Grifoni, D., Zipoli, G., et al. (2011). Influence of different light intensity regimes on leaf features of Vitis vinifera L. in ultraviolet radiation filtered condition. Environ. Exp. Bot. 73, 108–115. doi: 10.1016/j.envexpbot.2010.10.027
Pollastrini, M., Holland, V., Brüggemann, W., Bruelheide, H., Dănilă, I., Jaroszewicz, B., et al. (2016a). Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. New Phytol. 212, 51–65. doi: 10.1111/nph.14026
Pollastrini, M., Holland, V., Brüggemann, W., and Bussotti, F. (2016b). Chlorophyll a fluorescence analysis in forests. Annal. Bot. 6, 23–37. doi: 10.4462/annbotrm-13257
R Development Core Team. (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: RFoundation for Statistical Computing. Available online at http://www.R-project.org/(accessed March 16, 2017).
Redillas, M. C. F. R., Strasser, R. J., Jeong, J. S., Kim, Y. S., and Kim, J.-K. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnol. Rep. 5, 169–175. doi: 10.1007/s11816-011-0170-7
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Chang. Biol. 11, 1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x
Rho, H., Yu, D. J., Kim, S. J., and Lee, H. J. (2012). Limitation factors for photosynthesis in ‘Bluecrop’ highbush blueberry (Vaccinium corymbosum) leaves in response to moderate water stress. J. Plant Biol. 55, 450–457. doi: 10.1007/s12374-012-0261-1
Sage, R. F. (2013). Photorespiratory compensation: a driver for biological diversity. Plant Biol. 15, 624–638. doi: 10.1111/plb.12024
Scheller, H. V., and Haldrup, A. (2005). Photoinhibition of photosystem I. Planta 221, 5–8. doi: 10.1007/s00425-005-1507-7
Smit, M. F., Kruger, G. H. J., van Heerden, P. D. R., Pienaar, J. J., Weissflog, L., and Strasser, R. J. (2009). “Effect of trifluoroacetate, a persistent degradationproduct of fluorinated hydrocarbons, on C3 and C4 crop plants,” in Photosynthesis. Energy from the sun. 14th International Congress of Photosynthesis Glasgow 2007, eds J. F Allen, E. Gantt, J. H. Golbeck, B. Osmond (Dordrecht: Springer), 623–634.
Strasser, R., Srivastava, A., and Tsimilli-Michael, M. (2000). “The fluorescence transient as a tool to characterize and screen photosynthetic samples,” in Probing Photosynthesis: Mechanism, Regulation and Adaptation, eds M. Yunnus, U. Pathre, and P. Mohanty (London: Taylor and Francis), 443–480.
Strasser, R., Tsimilli-Michael, M., and Srivastava, A. (2004). “Analysis of the chlorophyll a transient,” in Chlorophyll Chlorophyll Fluorescence: A Signature of Photosynthesis, eds Govindjee, G. C. Papageorgiou (Dordrecht: Springer), 321–362.
Stroch, M., Vrábl, D., Podolinská, J., and Kalina, J., Urban, O., and Spunda, V. (2010). Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature. J. Plant Physiol. 167, 597–605. doi: 10.1016/j.jplph.2009.11.011
Takahashi, S., Milward, S. E., Fan, D.-Y., Chow, W. S., and Badger, M. R. (2009). How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol. 149, 1560–1567. doi: 10.1104/pp.108.134122
Tiwari, A., Mamedov, F., Grieco, M., Suorsa, M., Jajoo, A., Styring, S., et al. (2016). Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants 2:16035. doi: 10.1038/nplants.2016.35
Tozzi, E. S., Easlon, H. M., and Richards, J. H. (2013). Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood. Plant Cell Environ. 36, 1423–1434. doi: 10.1111/pce.12070
Tsimilli-Michael, M., and Strasser, R. J. (2008). “In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants,” in Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco- Physiology, Structure and Systematics, Vol. 3, ed A. Varma (Dordrecht: Springer), 679–703.
van Heerden, P. D. R., Tsimilli-Michael, M., Krüger, G. H. J., Strasser, R. J., and Kruger, G. H. J. (2003). Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol. Plant. 117, 476–491. doi: 10.1034/j.1399-3054.2003.00056.x
Voss, I., Sunil, B., Scheibe, R., and Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol. 15, 713–722. doi: 10.1111/j.1438-8677.2012. 00710.x
Wehr, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Davidson, E. A., et al. (2016). Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534, 680–683. doi: 10.1038/nature17966
Werner, C., Correia, O., and Beyschlag, W. (2002). Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Funct. Plant Biol. 29, 999–1011. doi: 10.1071/PP01143
Werner, C., Ryel, R. J., Correia, O., and Beyschlag, W. (2001). Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant Cell Environ. 24, 27–40. doi: 10.1046/j.1365-3040.2001.00651.x
Wohlfahrt, G., and Gu, L. (2015). The many meanings of gross photosynthesis and their implication for photosynthesis research fromleaf to globe. Plant Cell Environ. 38, 2500–2507. doi: 10.1111/pce.12569
Xu, Z. Z., Zhou, G. S., Wang, Y. L., Han, G. X., and Li, Y. J. (2008). Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J. Plant Growth Regul. 27, 83–92. doi: 10.1007/s00344-007-9035-2
Zhu, L., Johnson, D. A., Wang, W., Ma, L., and Rong, Y. (2015). Grazing effects on carbon fluxes in a Northern China grassland. J. Arid Environ. 114, 41–48. doi: 10.1016/j.jaridenv.2014.11.004