Abraham, W., Monsanto Technology Llc, Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase, 2010 United States Patent https://www.google.com/patents/US7771736.
Adam, E., Bernhart, M., Müller, H., Winkler, J., Berg, G., The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil, 2016, 1–15.
Adams, C.A., The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev. 23 (2010), 37–46.
Adlercreutz, H., Martin, F., Pulkkinen, M., Dencker, H., Rimer, U., Sjoberg, N.O., et al. Intestinal metabolism of estrogens. J. Clin. Endocrinol. Metab. 43 (1976), 497–505.
Agustina, R., Kok, F.J., van de Rest, O., Fahmida, U., Firmansyah, A., Lukito, W., et al. Randomized trial of probiotics and calcium on diarrhea and respiratory tract infections in Indonesian children. Pediatrics 129 (2012), e1155–64.
Agustina, R., Bovee-Oudenhoven, I.M., Lukito, W., Fahmida, U., van de Rest, O., Zimmermann, M.B., et al. Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J. Nutr. 143 (2013), 1184–1193.
Alenghat, T., Epigenomics and the microbiota. Toxicol. Pathol. 43 (2015), 101–106.
Ambrosone, C.B., McCann, S.E., Freudenheim, J.L., Marshall, J.R., Zhang, Y., Shields, P.G., Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 134 (2004), 1134–1138.
Azevedo, J.L., Araujo, W.L., Genetically modified crops: environmental and human health concerns. Mutat. Res. 544 (2003), 223–233.
Bakker, M.G., Schlatter, D.C., Otto-Hanson, L., Kinkel, L.L., Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol. Ecol. 23 (2014), 1571–1583.
Barret, M., Briand, M., Bonneau, S., Preveaux, A., Valiere, S., et al. Emergence shapes the structure of the seed microbiota. Appl. Environ. Microbiol. 81 (2015), 1257–1266.
Benítez-Páez, A., Gómez Del Pulgar, E.M., Kjølbæk, L., Brahe, L.K., Astrup, A., Larsen, L., et al. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci. Technol. 57 (2016), 201–212.
Berg, G., The Impact of Microbial Diversity of Plants for Health. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/188.
Berg, G., Smalla, K., Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68 (2009), 1–13.
Berg, G., Zachow, C., Müller, H., Philipps, J., Tilcher, R., Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3 (2013), 648–656.
Berg, G., Erlacher, A., Smalla, K., Krause, R., Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’?. Microb. Biotechnol. 7 (2014), 487–495.
Berg, G., Grube, M., Schloter, M., Smalla, K., The plant microbiome and its importance for plant and human health. Front. Microbiol., 5, 2014, 491.
Berg, G., Mahnert, A., Moissl-Eichinger, C., Beneficial effects of plant-associated microbes on indoor microbiomes and human health?. Front. Microbiol., 5, 2014, 15.
Berg, G., Erlacher, A., Grube, M., The edible plant microbiome: importance and health issues. Lugtenberg, B., (eds.) Principles of Plant-Microbe Interactions, 2015, Springer, 419–426.
Berg, G., Krause, R., Mendes, R., Cross-kingdom similarities in microbiome ecology and biocontrol of pathogens. Front. Microbiol., 6, 2015, 1311.
Blanton, L.V., Charbonneau, M.R., Salih, T., Barratt, M.J., Venkatesh, S., Ilkaveya, O., et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science, 351, 2016.
Bloomfield, S.F., Rook, G.A., Scott, E.A., Shanahan, F., Stanwell-Smith, R., Turner, P., Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public Health 136 (2016), 213–224.
Branchfield, K., Nantie, L., Verheyden, J.M., Sui, P., Wienhold, M.D., Sun, X., Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351 (2016), 707–710.
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 16050–16055.
Breitburg, D., Levin, L.A., Oschlies, A., Gregoire, M., Chavez, F.P., Conley, D.J., et al. Declining oxygen in the global ocean and coastal waters. Science, 359, 2018.
Breyer, D., Kopertekh, L., Reheul, D., Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants: scientific developments, current use, operational access and biosafety considerations. Crit. Rev. Plant Sci. 33 (2014), 286–330.
Broussard, J.L., Devkota, S., The changing microbial landscape of western society: diet, dwellings and discordance. Mol. Metab. 5 (2016), 737–742.
Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533 (2016), 543–546.
Callens, M., Macke, E., Muylaert, K., Bossier, P., Lievens, B., Waud, M., et al. Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna. ISME J. 10 (2016), 911–920.
Cammarota, G., Ianiro, G., Tilg, H., Rajilic-Stojanovic, M., Kump, P., Satokari, R., et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66 (2017), 569–580.
Canfora, E.E., Jocken, J.W., Blaak, E.E., Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11 (2015), 577–591.
Cani, P.D., Everard, A., Talking microbes: when gut bacteria interact with diet and host organs. Mol. Nutr. Food Res. 60 (2016), 58–66.
Cani, P.D., Geurts, L., Matamoros, S., Plovier, H., Duparc, T., Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond. Diabetes Metab. 40 (2014), 246–257.
Carabotti, M., Scirocco, A., Maselli, M.A., Severi, C., The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28 (2015), 203–209.
Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J., Berg, G., Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17 (2015), 239–252.
Carroll, I.M., Threadgill, D.W., Threadgill, D.S., The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm. Genome 20 (2009), 395–403.
Castro-Penalonga, M., Roca-Saavedra, P., Miranda, J.M., Porto-Arias, J.J., Nebot, C., Cardelle-Cobas, A., et al. Influence of food consumption patterns and Galician lifestyle on human gut microbiota. J. Physiol. Biochem., 2017, 10.1007/s13105-017-0570-4 [Epub ahead of print].
Cauchie, E., Gand, M., Kergourlay, G., Taminiau, B., Delhalle, L., Korsak, N., et al. The use of 16S rRNA gene metagenetic monitoring of refrigerated food products for understanding the kinetics of microbial subpopulations at different storage temperatures: the example of white pudding. Int. J. Food Microbiol. 247 (2017), 70–78.
CBD_biodiversity, The Global Partnership for Business and Biodiversity. 2017, Secretariat of the Convention on Biological Diversity (SCBD), Montreal https://www.cbd.int/business/gp.shtml.
CBD_Commodity production, Initiative for Biodiversity Impact Indicators for Commodity Production. 2017, Secretariat of the Convention on Biological Diversity (SCBD), Montreal https://www.cbd.int/business/projects/commodities.shtml.
Cenit, M.C., Olivares, M., Codoner-Franch, P., Sanz, Y., Intestinal microbiota and celiac disease: cause, consequence or co-evolution?. Nutrients 7 (2015), 6900–6923.
Cernava, T., Berg, G., Grube, M., High life expectancy of bacteria on lichens. Microb. Ecol., 72(3), 2016, 510.
Charbonneau, M.R., O'Donnell, D., Blanton, L.V., Totten, S.M., Davis, J.C., Barratt, M.J., et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164 (2016), 859–871.
Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., et al. Corrigendum: dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 536, 2016, 238.
Chen, J., Chia, N., Kalari, K.R., Yao, J.Z., Novotna, M., Soldan, M.M., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep., 6, 2016, 28484.
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O'Connor, E.M., Cusack, S., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488 (2012), 178–184.
Clarke, G., The Gut Microbiome and Brain Function. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/186.
Claus, S.P., Guillou, H., Ellero-Simatos, S., The gut microbiota: a major player in the toxicity of environmental pollutants?. npj Biofilms Microbiomes, 2, 2016, 16003.
Clemente, J.C., Ursell, L.K., Parfrey, L.W., Knight, R., The impact of the gut microbiota on human health: an integrative view. Cell 148 (2012), 1258–1270.
Cochran, R.E., Laskina, O., Trueblood, J.V., Estillore, A.D., Morris, H.S., Jayarathne, T., et al. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and Hygroscopicity. Chem 2 (2017), 655–667.
Coelho, M.C., Silva, C.C., Ribeiro, S.C., Dapkevicius, M.L., Rosa, H.J., Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 191 (2014), 53–59.
Collins, S.M., The intestinal microbiota in the irritable bowel syndrome. Int. Rev. Neurobiol. 131 (2016), 247–261.
Cook, M.D., Allen, J.M., Pence, B.D., Wallig, M.A., Gaskins, H.R., White, B.A., et al. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol. Cell Biol. 94 (2016), 158–163.
Cortese, R., Lu, L., Yu, Y., Ruden, D., Claud, E.C., Epigenome-microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11 (2016), 205–215.
Cotillard, A., Kennedy, S.P., Kong, L.C., Prifti, E., Pons, N., Le Chatelier, E., et al. Dietary intervention impact on gut microbial gene richness. Nature 500 (2013), 585–588.
Cox, L.M., Yamanishi, S., Sohn, J., Alekseyenko, A.V., Leung, J.M., Cho, I., et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158 (2014), 705–721.
Cryan, J.F., Dinan, T.G., Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13 (2012), 701–712.
Cuhra, M., Bøhn, T., Cuhra, P., Glyphosate: too much of a good thing?. Front. Environ. Sci., 4, 2016.
Dabrowska, K., Witkiewicz, W., Correlations of host genetics and gut microbiome composition. Front. Microbiol., 7, 2016, 1357.
Dao, M.C., Gut Microbiota and Cardiometabolic Disease Risk. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/185.
Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65 (2016), 426–436.
Daszak, P., Cunningham, A.A., Hyatt, A.D., Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78 (2001), 103–116.
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (2014), 559–563.
de Assis, S., Warri, A., Cruz, M.I., Laja, O., Tian, Y., Zhang, B., et al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat. Commun., 3, 2012, 1053.
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 14691–14696.
de Goffau, M.C., Luopajarvi, K., Knip, M., Ilonen, J., Ruohtula, T., Harkonen, T., et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62 (2013), 1238–1244.
Decaestecker, E., Genotype-dependant Microbiota Drives Zooplankton Resistance to Toxic Cyanobacteria. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/190.
Decaestecker, E., De Gersem, H., Michalakis, Y., Raeymaekers, J.A., Damped long-term host-parasite Red Queen coevolutionary dynamics: a reflection of dilution effects?. Ecol. Lett. 16 (2013), 1455–1462.
DeLeon-Rodriguez, N., Lathem, T.L., Rodriguez, R.L., Barazesh, J.M., Anderson, B.E., Beyersdorf, A.J., et al. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 2575–2580.
Derrien, M., Belzer, C., de Vos, W.M., Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106 (2017), 171–181.
D'Hondt, K., The Microbiome Diet & Health: Assessing Gaps in Science & Innovation. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/192.
D'Hondt, K., The Microbiome, Diet and Health: Assessing Gaps in Science and Innovation. http://www.ewi-vlaanderen.be/sites/default/files/microbiome_issues_paper_may_2016_kathleen_dhondt.pdf, 2016 (Brussels).
Dinan, T.G., Cryan, J.F., Melancholic microbes: a link between gut microbiota and depression?. Neurogastroenterol. Motil., 25(9), 2013, 713.
Dogra, S., Sakwinska, O., Soh, S.E., Ngom-Bru, C., Bruck, W.M., Berger, B., et al. Rate of establishing the gut microbiota in infancy has consequences for future health. Gut Microbes, 6(5), 2015, 321.
Dopico, X.C., Evangelou, M., Ferreira, R.C., Guo, H., Pekalski, M.L., Smyth, D.J., et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun., 6, 2015, 7000.
Ebling, F.J., Hypothalamic control of seasonal changes in food intake and body weight. Front. Neuroendocrinol. 37 (2015), 97–107.
Ege, M.J., Mayer, M., Normand, A.C., Genuneit, J., Cookson, W.O., Braun-Fahrlander, C., et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364 (2011), 701–709.
Engel, P., Kwong, W.K., McFrederick, Q., Anderson, K.E., Barribeau, S.M., Chandler, J.A., et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio, 7, 2016, e02164-15.
Erdman, S.E., Poutahidis, T., Gut bacteria and cancer. Biochim. Biophys. Acta 1856 (2015), 86–90.
Erdman, S.E., Poutahidis, T., Microbes and oxytocin: benefits for host physiology and behavior. Int. Rev. Neurobiol. 131 (2016), 91–126.
Espley, R.V., Butts, C.A., Laing, W.A., Martell, S., Smith, H., TK, McGhie, et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr. 144 (2014), 146–154.
European Chemicals Agency (ECHA), 4,4′-Sulphonyldiphenol; Repeated Dose Toxicity. https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14986/7/6/2, 2014. (Accessed 1 January 2018)
European Commission, Commission implementing regulation (EU) no 503/2013 of 3 April 2013 on applications for authorization of genetically modified food and feed in accordance with regulation (EC) no 1829/2003 of the European Parliament and of the council and amending commission regulations (EC) no 641/2004 and (EC) no 1981/2006. Off. J. Eur. Communities L157 (2013), 1–48.
European Food Safety Authority, Consolidated presentation of the joint scientific opinion of the GMO and BIOHAZ panels on the “use of antibiotic resistance genes as marker genes in genetically modified plants” and the scientific opinion of the GMO panel on “consequences of the opinion on the use of antibiotic resistance genes as marker genes in genetically modified plants on previous EFSA assessments of individual GM plants”. EFSA J. 1108 (2009), 2–3.
Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 9066–9071.
Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., et al. Population-level analysis of gut microbiome variation. Science 352 (2016), 560–564.
FAO/WHO, Safety Aspects of Genetically Modified Foods of Plant Origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived From Biotechnology. 2000, World Health Organisation, Geneva, Switzerland.
Fine, P.E., Floyd, S., Stanford, J.L., Nkhosa, P., Kasunga, A., Chaguluka, S., et al. Environmental mycobacteria in northern Malawi: implications for the epidemiology of tuberculosis and leprosy. Epidemiol. Infect. 126 (2001), 379–387.
Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484 (2012), 186–194.
Fliessbach, A., Oberholzer, H., Gunst, L., Maeder, P., Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118 (2007), 273–284.
Follett, B.K., “Seasonal changes in the neuroendocrine system”: some reflections. Front. Neuroendocrinol. 37 (2015), 3–12.
Ford, S.A., King, K.C., Harnessing the power of defensive microbes: evolutionary implications in nature and disease control. PLoS Pathog., 12, 2016, e1005465.
Ford, S.A., Kao, D., Williams, D., King, K.C., Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun., 7, 2016, 13430.
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (2015), 262–266.
Forsythe, P., Inman, M.D., Bienenstock, J., Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am. J. Respir. Crit. Care Med. 175 (2007), 561–569.
Fox, M., Knapp, L.A., Andrews, P.W., Fincher, C.L., Hygiene and the world distribution of Alzheimer's disease: epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol. Med. Public Health 2013 (2013), 173–186.
Francino, M.P., Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front. Microbiol., 6, 2015, 1543.
Franklin, C.L., Ericsson, A.C., Microbiota and reproducibility of rodent models. Lab. Anim. (NY) 46 (2017), 114–122.
Fuhrman, B.J., Feigelson, H.S., Flores, R., Gail, M.H., Xu, X., Ravel, J., et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99 (2014), 4632–4640.
Fujimura, K.E., Lynch, S.V., Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17 (2015), 592–602.
Furman, E., The Biodiversity Hypothesis: How to Operationalize It?. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/181.
Fyhrquist, N., Ruokolainen, L., Suomalainen, A., Lehtimaki, S., Veckman, V., Vendelin, J., et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J. Allergy Clin. Immunol. 134 (2014), 1301–1309 (e11).
Gascon, M., Morales, E., Sunyer, J., Vrijheid, M., Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ. Int. 52 (2013), 51–65.
Gauffin Cano, P., Santacruz, A., Moya, A., Sanz, Y., Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One, 7, 2012, e41079.
Gensollen, T., Iyer, S.S., Kasper, D.L., Blumberg, R.S., How colonization by microbiota in early life shapes the immune system. Science 352 (2016), 539–544.
Gerritsen, J., Smidt, H., Rijkers, G.T., de Vos, W.M., Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6 (2011), 209–240.
Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., et al. Human genetics shape the gut microbiome. Cell 159 (2014), 789–799.
Goodrich, J.K., Davenport, E.R., Beaumont, M., Jackson, M.A., Knight, R., Ober, C., et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19 (2016), 731–743.
Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P., Gill, H.S., McGuirk, P., van Eden, W., et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat. Clin. Pract. Gastroenterol. Hepatol. 3 (2006), 275–284.
Haahtela, T., What is needed for allergic children?. Pediatr. Allergy Immunol. 25 (2014), 21–24.
Haahtela, T., Laatikainen, T., Alenius, H., Auvinen, P., Fyhrquist, N., Hanski, I., et al. Hunt for the origin of allergy - comparing the Finnish and Russian Karelia. Clin. Exp. Allergy 45 (2015), 891–901.
Handelsman, J., Announcing the National Microbiome Initiative. 2016.
Hanski, I., von Hertzen, L., Fyhrquist, N., Koskinen, K., Torppa, K., Laatikainen, T., et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 8334–8339.
Harper, K., Armelagos, G., The changing disease-scape in the third epidemiological transition. Int. J. Environ. Res. Public Health 7 (2010), 675–697.
Hartmann, A., Rothballer, M., Schmid, M., Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312 (2007), 7–14.
Heard, E., Martienssen, R.A., Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157 (2014), 95–109.
Hoisington, A.J., Brenner, L.A., Kinney, K.A., Postolache, T.T., Lowry, C.A., The microbiome of the built environment and mental health. Microbiome, 3, 2015, 60.
Hong, H.A., Khaneja, R., Tam, N.M., Cazzato, A., Tan, S., Urdaci, M., et al. Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160 (2009), 134–143.
Hong, H.A., To E, Fakhry, S., Baccigalupi, L., Ricca, E., Cutting, S.M., Defining the natural habitat of Bacillus spore-formers. Res. Microbiol. 160 (2009), 375–379.
Hornef, M., Penders, J., Does a prenatal bacterial microbiota exist?. Mucosal Immunol. 10 (2017), 598–601.
Hu, J., Raikhel, V., Gopalakrishnan, K., Fernandez-Hernandez, H., Lambertini, L., Manservisi, F., et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome, 4, 2016, 26.
Hua, X., Goedert, J.J., Pu, A., Yu, G., Shi, J., Allergy associations with the adult fecal microbiota: analysis of the American gut project. EBioMedicine 3 (2016), 172–179.
IHMC, The International Human Microbiome Consortium. 2008, INRA - Génétique Microbienne http://www.human-microbiome.org.
Iida, N., Dzutsev, A., Stewart, C.A., Smith, L., Bouladoux, N., Weingarten, R.A., et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342 (2013), 967–970.
Jakobsson, H.E., Abrahamsson, T.R., Jenmalm, M.C., Harris, K., Quince, C., Jernberg, C., et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63 (2014), 559–566.
Jernberg, C., Lofmark, S., Edlund, C., Jansson, J.K., Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156 (2010), 3216–3223.
Joly, C., Gay-Queheillard, J., Leke, A., Chardon, K., Delanaud, S., Bach, V., et al. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the human intestinal microbial ecosystem (SHIME) and in the rat. Environ. Sci. Pollut. Res. Int. 20 (2013), 2726–2734.
Kachrimanidou, M., Sarmourli, T., Skoura, L., Metallidis, S., Malisiovas, N., Clostridium difficile infection: new insights into therapeutic options. Crit. Rev. Microbiol. 42 (2016), 773–779.
Kaevska, M., Lvoncik, S., Slana, I., Kulich, P., Kralik, P., Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants. Appl. Environ. Microbiol. 80 (2014), 3888–3894.
Karesh, W.B., Dobson, A., Lloyd-Smith, J.O., Lubroth, J., Dixon, M.A., Bennett, M., et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380 (2012), 1936–1945.
Kelly, J.R., Clarke, G., Cryan, J.F., Dinan, T.G., Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann. Epidemiol. 26 (2016), 366–372.
Kergourlay, G., Taminiau, B., Daube, G., Champomier Verges, M.C., Metagenomic insights into the dynamics of microbial communities in food. Int. J. Food Microbiol. 213 (2015), 31–39.
Kirkpatrick, B., Currier, R., Nierenberg, K., Reich, A., Backer, L.C., Stumpf, R., et al. Florida red tide and human health: a pilot beach conditions reporting system to minimize human exposure. Sci. Total Environ. 402 (2008), 1–8.
Kish, L., Hotte, N., Kaplan, G.G., Vincent, R., Tso, R., Ganzle, M., et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One, 8, 2013, e62220.
Kleinnijenhuis, J., van Crevel, R., Netea, M.G., Trained immunity: consequences for the heterologous effects of BCG vaccination. Trans. R. Soc. Trop. Med. Hyg. 109 (2015), 29–35.
Knights, D., Ward, T.L., McKinlay, C.E., Miller, H., Gonzalez, A., McDonald, D., et al. Rethinking “enterotypes”. Cell Host Microbe 16 (2014), 433–437.
Knip, M., Siljander, H., The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 12 (2016), 154–167.
Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U. S. A. 108:Suppl. 1 (2011), 4578–4585.
Korpela, K., Salonen, A., Virta, L.J., Kekkonen, R.A., Forslund, K., Bork, P., et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun., 7, 2016, 10410.
Koskinen, J.P., Kiviranta, H., Vartiainen, E., Jousilahti, P., Vlasoff, T., von Hertzen, L., et al. Common environmental chemicals do not explain atopy contrast in the Finnish and Russian Karelia. Clin. Transl. Allergy, 6, 2016, 14.
Kramkowska, M., Grzelak, T., Czyzewska, K., Benefits and risks associated with genetically modified food products. Ann. Agric. Environ. Med. 20 (2013), 413–419.
Krautkramer, K.A., Kreznar, J.H., Romano, K.A., Vivas, E.I., Barrett-Wilt, G.A., Rabaglia, M.E., et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64 (2016), 982–992.
Kristensen, K., Henriksen, L., Cesarean section and disease associated with immune function. J. Allergy Clin. Immunol. 137 (2016), 587–590.
Kruger, M., Shehata, A.A., Schrodl, W., Rodloff, A., Glyphosate suppresses the antagonistic effect of Enterococcus spp. on clostridium botulinum. Anaerobe 20 (2013), 74–78.
Kumar, H., Lund, R., Laiho, A., Lundelin, K., Ley, R.E., Isolauri, E., et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio, 5, 2014.
Kurenbach, B., Marjoshi, D., Amabile-Cuevas, C.F., Ferguson, G.C., Godsoe, W., Gibson, P., et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. MBio, 6, 2015.
Lahti, L., Salojarvi, J., Salonen, A., Scheffer, M., de Vos, W.M., Tipping elements in the human intestinal ecosystem. Nat. Commun., 5, 2014, 4344.
Lal, C.V., Travers, C., Aghai, Z.H., Eipers, P., Jilling, T., Halloran, B., et al. The airway microbiome at birth. Sci. Rep., 6, 2016, 31023.
Latuga, M.S., Stuebe, A., Seed, P.C., A review of the source and function of microbiota in breast milk. Semin. Reprod. Med. 32 (2014), 68–73.
Latz, E., Eisenhauer, N., Rall, B.C., Allan, E., Roscher, C., Scheu, S., et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 100 (2012), 597–604.
Latz, E., Eisenhauer, N., Rall, B.C., Scheu, S., Jousset, A., Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci. Rep., 6, 2016, 23584.
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500 (2013), 541–546.
Leck, C., Bigg, K., Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus 57B (2005), 305–316.
Leone, V., Gibbons, S.M., Martinez, K., Hutchison, A.L., Huang, E.Y., Cham, C.M., et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17 (2015), 681–689.
Levin, H., Taubel, M., Hernandez, M., Summary of Sloan symposium: healthy buildings 2015-Europe. Microbiome, 3, 2015, 68.
Lewis, M.C., Inman, C.F., Patel, D., Schmidt, B., Mulder, I., Miller, B., et al. Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr. Allergy Immunol. 23 (2012), 265–269.
Liu, L., Chen, X., Skogerbo, G., Zhang, P., Chen, R., He, S., et al. The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics 100 (2012), 265–270.
Logan, A.C., Katzman, M.A., Balanza-Martinez, V., Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II. J. Physiol. Anthropol., 34, 2015, 9.
Lu, K., Abo, R.P., Schlieper, K.A., Graffam, M.E., Levine, S., Wishnok, J.S., et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ. Health Perspect. 122 (2014), 284–291.
Maas, J., Verheij, R.A., Groenewegen, P.P., de Vries, S., Spreeuwenberg, P., Green space, urbanity, and health: how strong is the relation?. J. Epidemiol. Community Health 60 (2006), 587–592.
Macke, E., Tasiemski, A., Massol, F., Callens, M., Decaestecker, E., Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos 126 (2017), 508–531.
Macovei, L., McCafferty, J., Chen, T., Teles, F., Hasturk, H., Paster, B.J., et al. The hidden ‘mycobacteriome’ of the human healthy oral cavity and upper respiratory tract. J. Oral Microbiol., 7, 2015, 26094.
Madan, J.C., Salari, R.C., Saxena, D., Davidson, L., O'Toole, G.A., Moore, J.H., et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 97 (2012), F456–62.
Mahnert, A., Moissl-Eichinger, C., Berg, G., Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Front. Microbiol., 6, 2015, 887.
Majnik, A.V., Lane, R.H., The relationship between early-life environment, the epigenome and the microbiota. Epigenomics 7 (2015), 1173–1184.
Massart, S., Martinez-Medina, M., Haissam Jijakli, M., Biological control in the microbiome era: challenges and opportunities. Biol. Control 89 (2015), 98–108.
Massart, S., Angeli, D., Sare, A., Jikali, M.H., Pertot, I., The microbiota that we eat: insights gained from metagenomic sequencing of apple fruit surface., European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/229/, 2016.
Maurice, C.F., Haiser, H.J., Turnbaugh, P.J., Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152 (2013), 39–50.
Maurice, C.F., Knowles, S.C., Ladau, J., Pollard, K.S., Fenton, A., Pedersen, A.B., et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9 (2015), 2423–2434.
McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loso, T., Douglas, A.E., et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 3229–3236.
Melero, B., Vinuesa, R., Diez, A.M., Jaime, I., Rovira, J., Application of protective cultures against Listeria monocytogenes and Campylobacter jejuni in chicken products packaged under modified atmosphere. Poult. Sci. 92 (2013), 1108–1116.
Menard, S., Guzylack-Piriou, L., Leveque, M., Braniste, V., Lencina, C., Naturel, M., et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J. 28 (2014), 4893–4900.
Mendes, R., Raaijmakers, J.M., Cross-kingdom similarities in microbiome functions. ISME J. 9 (2015), 1905–1907.
Metacardis, EU-funded Investigation Into Effects of Gut Microbiota in Cardiometabolic Diseases. 2012, Metacardis consortium, Paris http://www.metacardis.net.
Mhuireach, G., Johnson, B.R., Altrichter, A.E., Ladau, J., Meadow, J.F., Pollard, K.S., et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571 (2016), 680–687.
Midtvedt, T., Antibiotic resistance and genetically modified plants. Microb. Ecol. Health Dis., 25, 2014.
Miller, W.B. Jr., The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front. Pediatr., 4, 2016, 96.
Mitchell, R., Popham, F., Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372 (2008), 1655–1660.
Mnif, W., Hassine, A.I., Bouaziz, A., Bartegi, A., Thomas, O., Roig, B., Effect of endocrine disruptor pesticides: a review. Int. J. Environ. Res. Public Health 8 (2011), 2265–2303.
Moloney, R.D., Desbonnet, L., Clarke, G., Dinan, T.G., Cryan, J.F., The microbiome: stress, health and disease. Mamm. Genome 25 (2014), 49–74.
Moore, M.N., Do airborne biogenic chemicals interact with the PI3K/Akt/mTOR cell signalling pathway to benefit human health and wellbeing in rural and coastal environments?. Environ. Res. 140 (2015), 65–75.
Mozaffarian, D., Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133 (2016), 187–225.
My New Gut, My New Gut Consortium, Madrid. http://www.mynewgut.eu/home, 2013.
Nadal, I., Santacruz, A., Marcos, A., Warnberg, J., Garagorri, J.M., Moreno, L.A., et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes. 33 (2009), 758–767.
NESCent Working Group on the Evolutionary Biology of the Built Environment, Martin, L.J., Adams, R.I., Bateman, A., Bik, H.M., Hawks, J., et al. Evolution of the indoor biome. Trends Ecol. Evol. 30 (2015), 223–232.
Netea, M.G., van Crevel, R., BCG-induced protection: effects on innate immune memory. Semin. Immunol. 26 (2014), 512–517.
Neu, J., The microbiome during pregnancy and early postnatal life. Semin. Fetal Neonatal Med. 21 (2016), 373–379.
Nguyen, T.L., Vieira-Silva, S., Liston, A., Raes, J., How informative is the mouse for human gut microbiota research?. Dis. Model. Mech. 8 (2015), 1–16.
Nicholson, W.L., Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59 (2002), 410–416.
Noval Rivas, M., Burton, O.T., Wise, P., Zhang, Y.Q., Hobson, S.A., Garcia Lloret, M., et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131 (2013), 201–212.
Novio, S., Cartea, M.E., Soengas, P., Freire-Garabal, M., Nunez-Iglesias, M.J., Effects of Brassicaceae isothiocyanates on prostate cancer. Molecules, 21, 2016.
O'Keefe, S.J., Li, J.V., Lahti, L., Ou, J., Carbonero, F., Mohammed, K., et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun., 6, 2015, 6342.
Olivares, M., Neef, A., Castillejo, G., Palma, G.D., Varea, V., Capilla, A., et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64 (2015), 406–417.
Org, E., Parks, B.W., Joo, J.W., Emert, B., Schwartzman, W., Kang, E.Y., et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25 (2015), 1558–1569.
Parajuli, A., Gronroos, M., Kauppi, S., Plociniczak, T., Roslund, M.I., Galitskaya, P., et al. The abundance of health-associated bacteria is altered in PAH polluted soils-implications for health in urban areas?. PLoS One, 12, 2017, e0187852.
Paul, B., Barnes, S., Demark-Wahnefried, W., Morrow, C., Salvador, C., Skibola, C., et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin. Epigenetics, 7, 2015, 112.
Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 6548–6553.
Pérez-Jaramillo, J.E., Mendes, R., Raaijmakers, J.M., Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90 (2016), 635–644.
Planer, J.D., Peng, Y., Kau, A.L., Blanton, L.V., Ndao, I.M., Tarr, P.I., et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534 (2016), 263–266.
Plovier, H., Cross-talk Between Gut Microbiome and Host Physiology – Focus on Metabolic Diseases. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/183.
Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23 (2017), 107–113.
Portune, K.J., Beaumont, M., Davila, A., Tomé D., Blachier, F., Sanz, Y., Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci. Technol. 57:Part B (2016), 213–232.
Poutahidis, T., Gut Bacteria and Carcinogenesis. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/187.
Poutahidis, T., Erdman, S.E., Commensal bacteria modulate the tumor microenvironment. Cancer Lett. 380 (2016), 356–358.
Poutahidis, T., Kearney, S.M., Levkovich, T., Qi, P., Varian, B.J., Lakritz, J.R., et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 8, 2013, e78898.
Poutahidis, T., Kleinewietfeld, M., Smillie, C., Levkovich, T., Perrotta, A., Bhela, S., et al. Microbial reprogramming inhibits western diet-associated obesity. PLoS One, 8, 2013, e68596.
Poutahidis, T., Springer, A., Levkovich, T., Qi, P., Varian, B.J., Lakritz, J.R., et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One, 9, 2014, e84877.
Poutahidis, T., Varian, B.J., Levkovich, T., Lakritz, J.R., Mirabal, S., Kwok, C., et al. Dietary microbes modulate transgenerational cancer risk. Cancer Res. 75 (2015), 1197–1204.
Prather, K.A., Bertram, T.H., Grassian, V.H., Deane, G.B., Stokes, M.D., Demott, P.J., et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 7550–7555.
Raes, J., About the Normal Variability of the Human Intestinal Microbiome. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/183.
Ramirez-Puebla, S.T., Servin-Garciduenas, L.E., Jimenez-Marin, B., Bolanos, L.M., Rosenblueth, M., Martinez, J., et al. Gut and root microbiota commonalities. Appl. Environ. Microbiol. 79 (2013), 2–9.
Rando, O.J., Simmons, R.A., I'm eating for two: parental dietary effects on offspring metabolism. Cell 161 (2015), 93–105.
Rao, V.P., Poutahidis, T., Fox, J.G., Erdman, S.E., Breast cancer: should gastrointestinal bacteria be on our radar screen?. Cancer Res. 67 (2007), 847–850.
Rautava, S., Luoto, R., Salminen, S., Isolauri, E., Microbial contact during pregnancy, intestinal colonization and human disease. Nat. Rev. Gastroenterol. Hepatol. 9 (2012), 565–576.
Raymann, K., Shaffer, Z., Moran, N.A., Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol., 15, 2017, e2001861.
Reber, S.O., Siebler, P.H., Donner, N.C., Morton, J.T., Smith, D.G., Kopelman, J.M., et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E3130–9.
Rhee, K.J., Sethupathi, P., Driks, A., Lanning, D.K., Knight, K.L., Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172 (2004), 1118–1124.
Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 2013, 1241214.
Roca-Saavedra, P., Mendez-Vilabrille, V., Miranda, J.M., Nebot, C., Cardelle-Cobas, A., Franco, C.M., et al. Food additives, contaminants and other minor components: effects on human gut microbiota-a review. J. Physiol. Biochem., 2017, 10.1007/s13105-017-0570-4 [Epub ahead of print].
Romano-Keeler, J., Weitkamp, J.H., Maternal influences on fetal microbial colonization and immune development. Pediatr. Res. 77 (2015), 189–195.
Rook, G.A., Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 18360–18367.
Rook, G.A., Adams, V., Hunt, J., Palmer, R., Martinelli, R., Brunet, L.R., Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin. Immunopathol. 25 (2004), 237–255.
Rook, G.A., Raison, C.L., Lowry, C.A., Microbiota, immunoregulatory old friends and psychiatric disorders. Lyte, M., Cryan, J.F., (eds.) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, 817, 2014, Springer, New York, 319–356.
Rosenberg, E., Zilber-Rosenberg, I., Microbes drive evolution of animals and plants: the hologenome concept. MBio, 7, 2016, e01395.
Round, J.L., Mazmanian, S.K., The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9 (2009), 313–323.
Ruiz, L., Hevia, A., Bernardo, D., Margolles, A., Sanchez, B., Extracellular molecular effectors mediating probiotic attributes. FEMS Microbiol. Lett. 359 (2014), 1–11.
Ruokolainen, L., Ilkka Hanski's legacy to allergy research: the environment-microbiota-health axis., European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/182, 2016.
Ruokolainen, L., von Hertzen, L., Fyhrquist, N., Laatikainen, T., Lehtomaki, J., Auvinen, P., et al. Green areas around homes reduce atopic sensitization in children. Allergy 70 (2015), 195–202.
Ruokolainen, L., Paalanen, L., Karkman, A., Laatikainen, T., von Hertzen, L., Vlasoff, T., et al. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin. Exp. Allergy 47 (2017), 665–674.
Sahlberg, B., Wieslander, G., Norback, D., Sick building syndrome in relation to domestic exposure in Sweden–a cohort study from 1991 to 2001. Scand. J. Public Health 38 (2010), 232–238.
Sangari, F.J., Parker, A., Bermudez, L.E., Mycobacterium avium interaction with macrophages and intestinal epithelial cells. Front. Biosci. 4 (1999), D582–8.
Sanz, Y., Microbiome Influence on Energy Balance and Brain Development-Function Put Into Action to Tackle Diet-related Diseases and Behaviour. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/214.
Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C., et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife, 2, 2013, e01202.
Schlatter, D.C., Bakker, M.G., Bradeen, J.M., Kinkel, L.L., Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96 (2014), 134–142.
Schmid, F., Moser, G., Muller, H., Berg, G., Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl. Environ. Microbiol. 77 (2011), 2188–2191.
Schuijs, M.J., Willart, M.A., Vergote, K., Gras, D., Deswarte, K., Ege, M.J., et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349 (2015), 1106–1110.
Schulz, O., Pabst, O., Antigen sampling in the small intestine. Trends Immunol. 34 (2013), 155–161.
Selhub, E.M., Logan, A.C., Bested, A.C., Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J. Physiol. Anthropol., 33, 2014, 2.
Shehata, A.A., Schrödl, W., Aldin, A.A., Hafez, H.M., Krüger, M., The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr. Microbiol. 66 (2013), 350–358.
Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67 (2001), 4742–4751.
Smillie, C.S., Smith, M.B., Friedman, J., Cordero, O.X., David, L.A., Alm, E.J., Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480 (2011), 241–244.
Snijders, A.M., Langley, S.A., Kim, Y.M., Brislawn, C.J., Noecker, C., Zink, E.M., et al. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat. Microbiol., 2, 2016, 16221.
Sommer, F., Stahlman, M., Ilkayeva, O., Arnemo, J.M., Kindberg, J., Josefsson, J., et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14 (2016), 1655–1661.
Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S., Sonnenburg, J.L., Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 (2016), 212–215.
Special Rapporteur, Report of the Special Rapporteur on the Issue of Human Rights Obligations Relating to the Enjoyment of a Safe, Clean, Healthy and Sustainable Environment. UN General Assembly. Human Rights Council, 34th Session, 27 February-24 March 2017, doct nO A/HRC/34/49. 2016.
Spor, A., Koren, O., Ley, R., Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9 (2011), 279–290.
Stanwell-Smith, R., Bloomfield, S.F., Rook, G.A.W., The Hygiene Hypothesis and Its Implications for Home Hygiene, Lifestyle and Public Health. 2012, International Scientific Forum on Home Hygiene http://www.ifh-homehygiene.org/reviews-hygiene-hypothesis.
Stein, M.M., Hrusch, C.L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S.E., et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375 (2016), 411–421.
Stephenne, X., Fecal Transplantation and Multiresistant Germs. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/191.
Su, L.F., Kidd, B.A., Han, A., Kotzin, J.J., Davis, M.M., Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 38 (2013), 373–383.
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C.A., Maza, O., et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514 (2014), 181–186.
Suez, J., Korem, T., Zilberman-Schapira, G., Segal, E., Elinav, E., Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes 6 (2015), 149–155.
Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., et al. Ocean plankton. Structure and function of the global ocean microbiome. Science, 348, 2015, 1261359.
Supic, G., Jagodic, M., Magic, Z., Epigenetics: a new link between nutrition and cancer. Nutr. Cancer 65 (2013), 781–792.
Taminiau, B., FLORPRO Project: Selection of Beneficial Bacteria From Chilled Foodstuffs to Protect Them From Bacterial Spoilage and Increase Their Shelf Life. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/189.
Tan, J., McKenzie, C., Vuillermin, P.J., Goverse, G., Vinuesa, C.G., Mebius, R.E., et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15 (2016), 2809–2824.
Tanaka, S., Kobayashi, T., Songjinda, P., Tateyama, A., Tsubouchi, M., Kiyohara, C., et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol. Med. Microbiol. 56 (2009), 80–87.
Tang, W.H., Hazen, S.L., The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124 (2014), 4204–4211.
Tarazona, J.V., Court-Marques, D., Tiramani, M., Reich, H., Pfeil, R., Istace, F., et al. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 91 (2017), 2723–2743.
Thaiss, C.A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A.C., et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159 (2014), 514–529.
Tito, R.Y., Knights, D., Metcalf, J., Obregon-Tito, A.J., Cleeland, L., Najar, F., et al. Insights from characterizing extinct human gut microbiomes. PLoS One, 7, 2012, e51146.
Trasande, L., Blustein, J., Liu, M., Corwin, E., Cox, L.M., Blaser, M.J., Infant antibiotic exposures and early-life body mass. Int. J. Obes. 37 (2013), 16–23.
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (2006), 1027–1031.
Turrini, A., Sbrana, C., Giovannetti, M., Belowground environmental effects of transgenic crops: a soil microbial perspective. Res. Microbiol. 166 (2015), 121–131.
UN General Assembly, Resolution Adopted by the General Assembly on 25 September 2015. http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E, 2015 (New York).
van der Heijden, M.G., de Bruin, S., Luckerhoff, L., van Logtestijn, R.S., Schlaeppi, K., A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10 (2016), 389–399.
Van Puyvelde, S., Deborggraeve, S., Jacobs, J., Why the antibiotic resistance crisis requires a one health approach. Lancet Infect. Dis., 2017, 10.1016/S1473-3099(17)30704-1 [Epub ahead of print].
Vandenberg, L.N., Blumberg, B., Antoniou, M.N., Benbrook, C.M., Carroll, L., Colborn, T., et al. Is it time to reassess current safety standards for glyphosate-based herbicides?. J. Epidemiol. Community Health 71 (2017), 613–618.
Vandenplas, Y., Pierard, D., De Greef, E., Fecal microbiota transplantation: just a fancy trend?. J. Pediatr. Gastroenterol. Nutr. 61 (2015), 4–7.
Varian, B.J., Levkovich, T., Poutahidis, T., Ibrahim, Y., Perotta, A., Alm, E.J., et al. Beneficial dog bacteria up-regulate oxytocin and lower risk of obesity. J. Prob. Health, 4, 2016, 149.
Vatanen, T., Kostic, A.D., d'Hennezel, E., Siljander, H., Franzosa, E.A., Yassour, M., et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell, 165, 2016, 1551.
Velmurugan, G., Ramprasath, T., Gilles, M., Swaminathan, K., Ramasamy, S., Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab. 28 (2017), 612–625.
Verlicchi, P., Zambello, E., Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil - a critical review. Sci. Total Environ. 538 (2015), 750–767.
Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillere, R., Hannani, D., et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342 (2013), 971–976.
Vickers, M.H., Early life nutrition, epigenetics and programming of later life disease. Nutrients 6 (2014), 2165–2178.
von Hertzen, L., Haahtela, T., Disconnection of man and the soil: reason for the asthma and atopy epidemic?. J. Allergy Clin. Immunol. 117 (2006), 334–344.
von Hertzen, L., Hanski, I., Haahtela, T., Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12 (2011), 1089–1093.
von Hertzen, L., Beutler, B., Bienenstock, J., Blaser, M., Cani, P.D., Eriksson, J., et al. Helsinki alert of biodiversity and health. Ann. Med. 47 (2015), 218–225.
von Mutius, E., Vercelli, D., Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10 (2010), 861–868.
Vuong, H.E., Hsiao, E.Y., Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81 (2017), 411–423.
Wagner, M.R., Lundberg, D.S., Del Rio, T.G., Tringe, S.G., Dangl, J.L., Mitchell-Olds, T., Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun., 7, 2016, 12151.
Walke, J.B., Belden, L.K., Harnessing the microbiome to prevent fungal infections: lessons from amphibians. PLoS Pathog., 12, 2016, e1005796.
Wall, D.H., Nielsen, U.N., Six, J., Soil biodiversity and human health. Nature 528 (2015), 69–76.
Wheeler, B.W., White, M., Stahl-Timmins, W., Depledge, M.H., Does living by the coast improve health and wellbeing?. Health Place 18 (2012), 1198–1201.
Whittle, G., Shoemaker, N.B., Salyers, A.A., The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell. Mol. Life Sci. 59 (2002), 2044–2054.
WHO, Health Aspects of Marker Genes in Genetically Modified Plants. Report of a WHO Workshop, Copenhagen, Denmark, September 21–24, 1993. 1993, World Health Organisation, Geneva, Switzerland.
Winglee, K., Howard, A.G., Sha, W., Gharaibeh, R.Z., Liu, J., Jin, D., et al. Recent urbanization in China is correlated with a westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 5, 2017, 121.
Workshop Session, Cross-pollinating Agro-eco-human Health Perspectives to Reduce Antimicrobial Resistance (AMR) Threats. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/131.
Workshop Session, Environmental and Internal Microbiome. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/75.
Workshop Session, Zoonotic Diseases. 2016, European OneHealth/EcoHealth Workshop, Brussels http://www.biodiversity.be/health/71.
Wu, H.J., Ivanov, I.I., Darce, J., Hattori, K., Shima, T., Umesaki, Y., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 (2010), 815–827.
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (2011), 105–108.
Wu, G.D., Compher, C., Chen, E.Z., Smith, S.A., Shah, R.D., Bittinger, K., et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65 (2016), 63–72.
Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2015), 264–276.
Yu, W., Yuan, X., Xu, X., Ding, R., Pang, L., Liu, Y., et al. Reduced airway microbiota diversity is associated with elevated allergic respiratory inflammation. Ann Allergy Asthma Immunol 115 (2015), 63–68.
Yu, Y., Lu, L., Sun, J., Petrof, E.O., Claud, E.C., Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model. Am. J. Physiol. Gastrointest. Liver Physiol. 311 (2016), G521–32.
Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al. Personalized nutrition by prediction of glycemic responses. Cell 163 (2015), 1079–1094.
Zelante, T., Iannitti, R.G., Fallarino, F., Gargaro, M., De Luca, A., Moretti, S., et al. Tryptophan feeding of the IDO1-AhR Axis in host-microbial symbiosis. Front. Immunol., 5, 2014, 640.
Zeng, H., Chi, H., Metabolic control of regulatory T cell development and function. Trends Immunol. 36 (2015), 3–12.
Zhang, L., Nichols, R.G., Correll, J., Murray, I.A., Tanaka, N., Smith, P.B., et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ. Health Perspect. 123 (2015), 679–688.
Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21 (2016), 786–796.