[en] This paper focuses on a charge-sensitive model to characterize the off-design performance of low-capacity organic Rankine cycle (ORC) power systems. The goal is to develop a reliable steady-state model that only uses the system boundary conditions (i.e. the supply heat source/heat sink conditions, the mechanical components rotational speeds, the ambient temperature and the total charge of working fluid) in order to predict the ORC performance. To this end, sub-models are developed to simulate each component and they are assembled to model the entire closed-loop system. A dedicated solver architecture is proposed to ensure high-robustness for charge-sensitive simulations.
This work emphasizes the complexity of the heat exchangers modelling. It demonstrates how state-of-the-art correlations may be used to identify the convective heat transfer coefficients and how the modelling of the charge helps to assess their reliability. In order to compute the fluid density in two-phase conditions, five different void fraction models are investigated. A 2 kWe unit is used as case study and the charge-sensitive ORC model is validated by comparison to experimental measurements. Using this ORC model, the mean percent errors related to the thermal power predictions in the heat exchangers are lower than 2%. Regarding the mechanical powers in the pump/expander and the net thermal efficiency of the system, these errors are lower than 11.5% and 11.6%, respectively.
Research Center/Unit :
Thermodynamics Laboratory - ULiège
Disciplines :
Energy
Author, co-author :
Dickes, Rémi ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Dumont, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Guillaume, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Language :
English
Title :
Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation
Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G., Low-grade heat conversion into power using organic Rankine cycles – a review of various applications. Renew Sustain Energy Rev 15:8 (2011), 3963–3979 URL .
Macchi, E., Astolfi, M., (eds.) Organic Rankine Cycle (ORC) power systems – technologies and applications, elsevier ed., 2016, Woodhead Publishing Series in Energy.
Gurgenci, H., Performance of power plants with organic Rankine cycles under part-load and off-design conditions. Solar Wind Technol 36:1 (1986), 45–51, 10.1016/0038-092X(86)90059-9 URL .
Wang, J., Yan, Z., Zhao, P., Dai, Y., Off-design performance analysis of a solar-powered organic Rankine cycle. Energy Convers Manage 80 (2014), 150–157, 10.1016/j.enconman.2014.01.032.
Hu, D., Zheng, Y., Wu, Y., Li, S., Dai, Y., Off-design performance comparison of an organic Rankine cycle under different control strategies. Appl Energy 156 (2015), 268–279, 10.1016/j.apenergy.2015.07.029 URL .
Manente, G., Toffolo, A., Lazzaretto, A., Paci, M., An Organic Rankine Cycle off-design model for the search of the optimal control strategy. Energy 58 (2013), 97–106, 10.1016/j.energy.2012.12.035.
Quoilin, S., Sustainable energy conversion through the use of organic Rankine cycles for waste heat recovery and solar applications. [Ph.D. thesis], 2011, University of Liège.
Lecompte S, Broek MVD, Paepe MD. Optimal part-load operation of an 11 kWe organic Rankine cycle for waste heat recovery. In: Proceedings of ECOS 2016; 2016.
Ibarra, M., Rovira, A., Alarcón-Padilla, D.C., Blanco, J., Performance of a 5 kWe Organic Rankine Cycle at part-load operation. Appl Energy 120 (2014), 147–158, 10.1016/j.apenergy.2014.01.057.
Dickes, R., Dumont, O., Daccord, R., Quoilin, S., Lemort, V., Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study. Energy 123 (2017), 710–727, 10.1016/j.energy.2017.01.130 URL .
Li, H., Hu, D., Wang, M., Dai, Y., Off-design performance analysis of Kalina cycle for low temperature geothermal source. Appl Therm Eng 107 (2016), 728–737, 10.1016/j.applthermaleng.2016.07.014.
Song, J., Gu, C.-w., Ren, X., Parametric design and off-design analysis of organic Rankine cycle (ORC) system. Energy Convers Manage 112:March (2016), 157–165, 10.1016/j.enconman.2015.12.085 URL .
Möller, A., Gullapalli, V.S., System cost and efficiency optimization by heat exchanger performance simulations. Energy Procedia 119 (2017), 459–465, 10.1016/j.egypro.2017.07.087 URL .
Gullapalli, V.S., Modeling of brazed plate heat exchangers for ORC systems. Energy Procedia 129 (2017), 443–450, 10.1016/j.egypro.2017.09.207.
Ziviani, D., Woodland, B., Georges, E., Groll, E., Braun, J., Horton, W., et al. Development and a validation of a charge sensitive organic Rankine cycle (ORC) simulation tool. Energies, 9(6), 2016, 389, 10.3390/en9060389 URL .
Liu, L., Zhu, T., Ma, J., Working fluid charge oriented off-design modeling of a small scale organic Rankine cycle system. Energy Convers Manage 148 (2017), 944–953, 10.1016/j.enconman.2017.06.009.
Rossi, T.M., Detection, diagnosis, and evaluation of faults in vapor compression equipment. [Phd thesis], 1995, Purdue University URL .
Grodent, M., Contribution à l’étude des composants de systèmes frigorifiques: modélisation en régime stationnaire et validation expérimentale. Application des modèles développés à l’étude d'un système bisplit. [Ph.D. thesis], 1998, University à Liège.
Cuevas Barraza, C., Contribution to the modelling of refrigeration systems. [Phd thesis], 2006, University of Liège.
Farzad, M., O'Neal, D.L., The effect of void fraction model on estimation of air conditioner system performance variables under a range of refrigerant charging conditions. Int J Refrig 17:2 (1994), 85–93, 10.1016/0140-7007(94)90048-5.
Bendapudi, S., Braun, J.E., Groll, E.A., A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers. Int J Refrig 31:8 (2008), 1437–1452, 10.1016/j.ijrefrig.2008.03.006.
Desideri, A., Dechesne, B., Wronski, J., Broek, M.V.D., Sergei, G., Lemort, V., et al. Comparison of moving boundary and finite-volume heat exchanger models in the Modelica language. Energies, 2016, 1–17.
Grald, E.W., MacArthur, J., A moving-boundary formulation for modeling time-dependent two-phase flows. Int J Heat Fluid Flow 13:3 (1992), 266–272, 10.1016/0142-727X(92)90040-G.
Alobaid, F., Mertens, N., Starkloff, R., Lanz, T., Heinze, C., Epple, B., Progress in dynamic simulation of thermal power plants. Prog Energy Combust Sci 59 (2017), 79–162, 10.1016/j.pecs.2016.11.001.
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 53:6 (2014), 2498–2508.
Dickes R, Ziviani D, de Paepe M, van den Broek M, Quoilin S, et al. ORCmKit: an open-source library for organic Rankine cycle modelling and analysis. In: Proceedings of ECOS 2016, Portoroz (Solvenia); 2016. < http://hdl.handle.net/2268/198722>.
Dickes R, Dumont O, Declaye S, Quoilin S, Bell I, Lemort V. Experimental investigation of an ORC system for a micro-solar power plant. In: Proceedings of the 22nd international compressor engineering at Purdue, Purdue (USA); 2014. < http://hdl.handle.net/2268/170508>.
Georges, E., Declaye, S., Dumont, O., Quoilin, S., Lemort, V., Design of a small-scale organic Rankine cycle engine used in a solar power plant. Int J Low-Carbon Technol 8 (2013), 34–41, 10.1093/ijlct/ctt030 URL .
Bryszewska-Mazurek, A., Świeboda, T., Mazurek, W., Performance analysis of a solar-powered Organic rankine cycle engine. J Air Waste Manage Assoc 61:1 (2011), 3–6, 10.3155/1047-3289.61.1.3.
Baral, S., Kim, D., Yun, E., Kim, K., Experimental and thermoeconomic analysis of small-scale solar organic Rankine cycle (SORC) system. Entropy 17:4 (2015), 2039–2061, 10.3390/e17042039 URL .
Orosz M, Mueller A, Quoilin S, Hemond H. Small scale solar ORC system for distributed power in Lesotho. In: 29th ISES biennial solar world congress 2009, ISES 2009, vol. 2; 2009. p. 1042–8. < http://www.scopus.com/inward/record.url?eid=2-s2.0-84873835908&partnerID=tZOtx3y1>.
Electratherm. ElectraTherm ORC – Primer Series 4000 Green Machine; 2012. < https://electratherm.com/orc-knowledge-center-2/what-is-a-power-plus-generator/>.
Enogia. ENO ORC units datasheet; 2017. < http://enogia.com/product.php>.
InfinityTurbine. IT50 ORC unit – datasheet; 2017. < http://www.infinityturbine.com/it50.html>.
Bell, I.H., Quoilin, S., Georges, E., Braun, J.E., Groll, E.A., Horton, T.W., et al. A generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration. Appl Therm Eng 79 (2015), 192–201 URL .
Martin, H., A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem Eng Process 35:4 (1996), 301–310.
Wanniarachchi SA, Ratnam U, Tilton BE, Dutta-Roy K. Approximate correlations for chevron-type plate heat exchangers. In: Proceedings of the 30th national heat transfer conference, New York; 1995. p. 145–1.
Ayub, Z.H., Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf Eng 24:5 (2003), 3–16, 10.1080/01457630304056.
Amalfi, R.L., Vakili-Farahani, F., Thome, J.R., Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: comparison of literature methods to database and new prediction methods. Int J Refrig 61 (2016), 185–203, 10.1016/j.ijrefrig.2015.07.009.
Han, D.-H., Lee, K.-J., Kim, Y.-H., Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations. Appl Therm Eng 23 (2003), 1209–1225, 10.1016/S1359-4311(03)00061-9.
Cooper, M.G., Saturation nucleate pool boiling – a simple correlation. Inst Chem Eng Symp Ser 86 (1984), 785–793, 10.1016/B978-0-85295-175-0.50013-8 URL .
Longo, G.A., Righetti, G., Zilio, C., A new computational procedure for refrigerant condensation inside herringbone-type Brazed Plate Heat Exchangers. Int J Heat Mass Transf 82 (2015), 530–536, 10.1016/j.ijheatmasstransfer.2014.11.032.
Han, D.H., Lee, K.J., Kim, Y.H., The characteristics of condensation in brazed plate heat exchangers with different chevron angles. J Kor Phys Soc 43:1 (2003), 66–73, 10.1016/S1359-4311(03)00061-9.
Shah, M.M., A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22:4 (1979), 547–556, 10.1016/0017-9310(79)90058-9.
Cavallini, A., Col, D.D., Doretti, L., Matkovic, M., Rossetto, L., Zilio, C., et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transf Eng 27:8 (2006), 31–38, 10.1080/01457630600793970 URL .
Wang, C.-C., Chi, K.-Y., Chang, C.-J., Heat transfer and friction characteristics of plain fin-and- tube heat exchangers, part II: correlation. Int J Heat Mass Transf 43:15 (2000), 2693–2700, 10.1016/S0017-9310(99)00333-6.
Eldeeb, R., Aute, V., Radermacher, R., A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers. Int J Refrig 65 (2016), 12–26, 10.1016/j.ijrefrig.2015.11.013.
García-Cascales, J.R., Vera-García, F., Corberán-Salvador, J.M., Gonzálvez-Maciá J., Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. Int J Refrig 30:6 (2007), 1029–1041, 10.1016/j.ijrefrig.2007.01.004.
Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D., An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107:3 (2006), 391–408, 10.1007/s10107-004-0560-5.
Rice CK. Effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictions. In: ASHRAE transactions, vol. 93, New York (USA); 1987. p. 341–67.
Woldesemayat, M.A., Ghajar, A.J., Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int J Multiph Flow 33:4 (2007), 347–370, 10.1016/j.ijmultiphaseflow.2006.09.004.
Zivi, S.M., Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J Heat Transf 86:2 (1964), 247–251, 10.1115/1.3687113 URL .
Lockhart, R.W., Martinelli, R.C., Proposed correlation of data for isothermal two-phase two-component flow in pipes.pdf. Chem Eng Prog 45:1 (1949), 39–48.
Premoli, A., Francesco, D., Prina, A., A dimensional correlation for evaluating two-phase mixture density. La Termotecnica 25 (1971), 17–26.
Hughmark, G., Holdup in gas liquid flow. Chem Eng Prog 58:4 (1962), 62–65.
Lemort, V., Quoilin, S., Cuevas, C., Lebrun, J., Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl Therm Eng 29:14–15 (2009), 3094–3102, 10.1016/j.applthermaleng.2009.04.013.
Dickes R, Dumont O, Legros A, Quoilin S, Lemort V. Analysis and comparison of different modeling approaches for the simulation of a micro-scale organic Rankine cycle power plant. In: Proceedings of ASME -ORC 2015; 2015.
Landelle, A., Tauveron, N., Revellin, R., Haberschill, P., Colasson, S., Roussel, V., Performance investigation of reciprocating pump running with organic fluid for organic Rankine cycle. Appl Therm Eng 113 (2017), 962–969, 10.1016/j.applthermaleng.2016.11.096.
Brent RP. Algorithms for minimization without derivatives; 2002.