[en] Direct numerical simulations of a FENE-P fluid in both two- and three-dimensional straight periodic channels find that elasto-inertial turbulence is fundementally two-dimensional. The spurious effect of artificial diffusion of the polymer is demonstrated.
Disciplines :
Physics
Author, co-author :
Sid, Samir ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Dubief, Yves; University of Vermont > School of Engineering > Multiscale Mechanics and Computational Engineering
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Language :
English
Title :
Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction
B. A. Toms, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, In Proc. 1st Intl. Congr. on Rheology 2, 135 (1948).
P. S. Virk, Drag reduction fundamentals, AIChE J. 21, 625 (1975). AICEAC 0001-1541 10.1002/aic.690210402
D. Samanta, Y. Dubief, M. Holzner, C. Schäfer, A. N. Morozov, C. Wagner, and B. Hof, Elasto-inertial turbulence, Proc. Natl. Acad. Sci. USA 110, 10557 (2013). PNASA6 0027-8424 10.1073/pnas.1219666110
Y. Dubief, V. E. Terrapon, and J. Soria, On the mechanism of elasto-inertial turbulence, Phys. Fluids 25, 110817 (2013). PHFLE6 1070-6631 10.1063/1.4820142
V. E. Terrapon, Y. Dubief, and J. Soria, On the role of pressure in elasto-inertial turbulence, J. Turbul. 16, 26 (2014). 1468-5248 10.1080/14685248.2014.952430
J. Jiménez and A. Pinelli, The autonomous cycle of near-wall turbulence, J. Fluid Mech. 389, 335 (1999). JFLSA7 0022-1120 10.1017/S0022112099005066
C. D. Dimitropoulos, R. Sureshkumar, A. N. Beris, and R. Handler, Budgets of Reynolds stress, kinetic energy, and streamwise enstrophy in viscoelastic turbulent channel flow, Phys. Fluids 13, 1016 (2001). PHFLE6 1070-6631 10.1063/1.1345882
P. K. Ptasinski, B. J. Boersma, F. T. M. Nieuwstadt, M. A. Hulsen, B.H. A. A. Van Den Brule, and J. C. R. Hunt, Turbulent channel flow near maximum drag reduction: Simulations, experiments and mechanisms, J. Fluid Mech. 490, 251 (2003). JFLSA7 0022-1120 10.1017/S0022112003005305
T. Min, H. Choi, and J. Yul Yoo, Maximum drag reduction in a turbulent channel flow by polymer additives, J. Fluid Mech. 492, 91 (2003). JFLSA7 0022-1120 10.1017/S0022112003005597
T. Min, J. Yul Yoo, H. Choi, and D. D. Joseph, Drag reduction by polymer additives in a turbulent channel flow, J. Fluid Mech. 486, 213 (2003). JFLSA7 0022-1120 10.1017/S0022112003004610
V. E. Terrapon, Y. Dubief, P. Moin, E. S. G. Shaqfeh, and S. K. Lele, Simulated polymer stretch in a turbulent flow using Brownian dynamics, J. Fluid Mech. 504, 61 (2004). JFLSA7 0022-1120 10.1017/S0022112004008250
Y. Dubief, C. M. White, V. E. Terrapon, E. S. G. Shaqfeh, P. Moin, and S. K. Lele, On the coherent drag-reducing and turbulence-enhancing behavior of polymers in wall flows, J. Fluid Mech. 514, 271 (2004). JFLSA7 0022-1120 10.1017/S0022112004000291
K. Kim, R. J. Adrian, S. Balachandar, and R Sureshkumar, Dynamics of Hairpin Vortices and Polymer-Induced Turbulent Drag Reduction, Phys. Rev. Lett. 100, 134504 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.134504
A. Groisman and V. Steinberg, Elastic turbulence in a polymer solution flow, Nature (London) 405, 53 (2000). NATUAS 0028-0836 10.1038/35011019
A. Groisman and V. Steinberg, Efficient mixing at low Reynolds numbers using polymer additives, Nature (London) 410, 905 (2001). NATUAS 0028-0836 10.1038/35073524
A. Groisman and V. Steinberg, Elastic turbulence in curvilinear flows of polymer solutions, New J. Phys. 6, 29 (2004). NJOPFM 1367-2630 10.1088/1367-2630/6/1/029
S. Berti and G. Boffetta, Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow, Phys. Rev. E 82, 036314 (2010). PLEEE8 1539-3755 10.1103/PhysRevE.82.036314
Y. Dubief, V. E. Terrapon, C. M. White, E. S. G. Shaqfeh, P. Moin, and S. K. Lele, New answers on the interaction between polymers and vortices in turbulent flows, Flow, Turbul. Combust. 74, 311 (2005). 1386-6184 10.1007/s10494-005-9002-6
Y. Layec and M.-N. Layec-Raphalen, Instability of dilute poly (ethylene-oxide) solutions, J. Phys. Lett. 44, 121 (1983). JPSLBO 0302-072X 10.1051/jphyslet:01983004403012100
R. Sureshkumar, A. N. Beris, and R. A. Handler, Direct numerical simulation of the turbulent channel flow of a polymer solution, Phys. Fluids 9, 743 (1997). PHFLE6 1070-6631 10.1063/1.869229
E. De Angelis, C. M. Casciola, V. S. L'vov, R. Piva, and I. Procaccia, Drag reduction by polymers in turbulent channel flows: Energy redistribution between invariant empirical modes, Phys. Rev. E 67, 056312 (2003). 1063-651X 10.1103/PhysRevE.67.056312
P. A. Stone, A. Roy, R. G. Larson, F. Waleffe, and M. D. Graham, Polymer drag reduction in exact coherent structures of plane shear flow, Phys. Fluids 16, 3470 (2004). PHFLE6 1070-6631 10.1063/1.1775192
L. Xi and M. D. Graham, Active and Hibernating Turbulence in Minimal Channel Flow of Newtonian and Polymeric Fluids, Phys. Rev. Lett. 104, 218301 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.218301
C. F. Li, R. Sureshkumar, and B. Khomami, Influence of rheological parameters on polymer induced turbulent drag reduction, J. Non-Newtonian Fluid Mech. 140, 23 (2006). JNFMDI 0377-0257 10.1016/j.jnnfm.2005.12.012
T. Vaithianathan, A. Robert, J. G. Brasseur, and L. R. Collins, An improved algorithm for simulating three-dimensional, viscoelastic turbulence, J. Non-Newtonian Fluid Mech. 140, 3 (2006). JNFMDI 0377-0257 10.1016/j.jnnfm.2006.03.018
W.-H. Cai, F.-C. Li, and H.-N. Zhang, DNS study of decaying homogeneous isotropic turbulence with polymer additives, J. Fluid Mech. 665, 334 (2010). JFLSA7 0022-1120 10.1017/S0022112010003939
P. C. Valente, C. B. da Silva, and F. T. Pinho, The effect of viscoelasticity on the turbulent kinetic energy cascade, J. Fluid Mech. 760, 39 (2014). JFLSA7 0022-1120 10.1017/jfm.2014.585
P. O. Ferreira, F. T. Pinho, and C. B. da Silva, Large-eddy simulations of forced isotropic turbulence with viscoelastic fluids described by the FENE-P model, Phys. Fluids 28, 125104 (2016). PHFLE6 1070-6631 10.1063/1.4968218
A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160, 241 (2000). JCTPAH 0021-9991 10.1006/jcph.2000.6459
T. Min, J. Yul Yoo, and H. Choi, Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows, J. Non-Newtonian Fluid Mech. 100, 27 (2001). JNFMDI 0377-0257 10.1016/S0377-0257(01)00128-8
G. K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity, J. Fluid Mech. 5, 113 (1959). JFLSA7 0022-1120 10.1017/S002211205900009X
G. K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid Part 2. The case of large conductivity, J. Fluid Mech. 5, 134 (1959). JFLSA7 0022-1120 10.1017/S0022112059000106
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.011301 for additional numerical analyses demonstrating the adequacy of the numerical methodology and the quality of simulation results.
P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Vol. 142 (Springer Science & Business Media, 2012).
L. Xi and M. D. Graham, Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units, J. Fluid Mech. 647, 421 (2010). JFLSA7 0022-1120 10.1017/S0022112010000066
L. Xi and M. D. Graham, Dynamics on the Laminar-Turbulent Boundary and the Origin of the Maximum Drag Reduction Asymptote, Phys. Rev. Lett. 108, 028301 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.028301
M. Zhang, I. Lashgari, T. A. Zaki, and L. Brandt, Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids, J. Fluid Mech. 737, 249 (2013). JFLSA7 0022-1120 10.1017/jfm.2013.572
O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227, 7125 (2008). JCTPAH 0021-9991 10.1016/j.jcp.2008.03.027
Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143, 90 (1998). JCTPAH 0021-9991 10.1006/jcph.1998.5962
J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59, 308 (1985). JCTPAH 0021-9991 10.1016/0021-9991(85)90148-2
J. Jiménez and P. Moin, The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225, 213 (1991). JFLSA7 0022-1120 10.1017/S0022112091002033
Y. Dubief and F. Delcayre, On coherent-vortex identification in turbulence, J. Turbul. 1, N11 (2000). 1468-5248 10.1088/1468-5248/1/1/011
S.-N. Wang, M. D. Graham, F. J. Hahn, and L. Xi, Time-series and extended Karhunen-Loève analysis of turbulent drag reduction in polymer solutions, AIChE J. 60, 1460 (2014). AICEAC 0001-1541 10.1002/aic.14328
S.-N. Wang, A. Shekar, and M. D. Graham, Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow, J. Non-Newtonian Fluid Mech. 244, 104 (2017). JNFMDI 0377-0257 10.1016/j.jnnfm.2017.04.008