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SUPPLEMENTARY MATERIAL

The goal of this supplementary material is to demonstrate that the simulation methodology used to study the
physics of EIT is appropriate and provides accurate results. To do so, two codes using different numerics have been
developed and compared. In addition, a mesh convergence analysis has been carried out to determine the size of
the smallest physical scale that should be captured to properly simulate viscoelastic turbulence. This convergence
analysis is also used to measure the effects of the spatial resolution on the solution.

In order to emphasize that our conclusions are also valid for more challenging cases, the flow conditions considered
in this analysis slightly differ from those reported in the main paper. Specifically, a lower Reynolds number, Reτ =
40, and a larger Weissenberg number, Wiτ = 310, have been selected. This reduces the amount of inertia in the flow
and thus amplifies the effects of polymer diffusion on the solution, while keeping a self-sustained EIT state. All the
results reported in this supplementary material are obtained from two-dimensional simulations.
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FIG. 1. Time series of the volume-averaged instantaneous turbulent kinetic energy k (t) for Reτ = 40, Wiτ = 310 and different
Schmidt numbers: Sc = 9, Sc = 25, Sc = 50, Sc = 100. The initial time, t = 0, is defined as the time when the blowing-suction
perturbation is turned off.

Time series of the volume-averaged instantaneous turbulent kinetic energy k (t) are reported in Figure 1 for different
Schmidt numbers. The quantity k (t) is defined as

k (t) =

〈
1

2

u′ (x, t) · u′ (x, t)
u2
τ

〉

Ω

with u′ (x, t) = u (x, t)− u (x, t) , (1)

where the spatial and time averaging operators,

〈•〉Ω =
1

Ω

∫

Ω

• dΩ and •̄ =
1

Ts

∫ t0+Ts

t0

• dt , (2)

are introduced, Ω is the channel volume and Ts the sampling window for temporal averaging. The evolution of the
turbulent kinetic energy shows that, for the present flow conditions, Sc has to be between 50 and 100 to allow EIT
to sustain itself over time; large polymer diffusivity leads to flow laminarization. In this case, the critical Schmidt
number above which a non-laminar state is sustained is larger than the one reported for Reτ = 85, Wiτ = 40 owing
to the lower contribution of inertia at Reτ = 40.

Each simulation reported in Figure 1 has been performed using a spatial resolution ∆ that captures the viscous

Batchelor scale, i.e., ∆ ≈ ηB,ν = δνSc−1/2 = δ Re−1
τ Sc−1/2. Because (i) Batchelor theory only applies to a passive

scalar, which is not the case in EIT, and (ii) EIT strongly differs from classical Newtonian turbulence, the pertinence of
defining the mesh based on δν and ηB is not a priori obvious. In order to verify a posteriori how the smallest physical
scale compares to ηB,ν , a mesh convergence analysis has been performed. The mean volume-averaged turbulent kinetic

energy k (t) and mean volume-averaged polymer elongation mean square fluctuations
〈
C ′2 (x, t)

〉
Ω

are reported in

Figure 2 for different meshes, where C ′ (x, t) = tr
(
C (x, t)−C (x, t)

)
/L2. The solution obtained for ∆ ≈ ηB,ν (i.e.,
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FIG. 2. Mean volume-averaged turbulent kinetic energy k (t) (dark gray bars, plain line, left y-axis) and mean volume-averaged

polymer elongation mean square fluctuations
〈
C′2 (x, t)

〉
Ω

(light gray bars, dashed line, right y-axis) for Reτ = 40, Wiτ = 310,

Sc = 100 using different spatial resolutions.

on the 4096×768 mesh) is well-converged, and even a 1024×288 mesh provides a relatively accurate solution. For
coarser resolutions, the level of turbulent fluctuations starts to rapidly decrease, indicating that the mesh is not able
to capture all the relevant scales contributing to the flow dynamics.
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FIG. 3. Wall-normal and time-averaged normalized streamwise spectra of the turbulent kinetic energy k and elastic energy
ep for Reτ = 40, Wiτ = 310, Sc = 100 on meshes with 256×104, 512×192, 1024×288, 2048×384 and 4096×768 grid points.

Wavenumbers are pre-multiplied by the computed wall Kolmogorov length scale ηK =
(
ν3/εwall

)1/4
.

The distribution of fluctuations across spatial scales is analyzed though the wall-normal and time-averaged nor-
malized streamwise spectra of the turbulent kinetic energy k and elastic energy ep, as shown in Figure 3 for different
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mesh sizes. The two normalized spectra are respectively defined as

φnk,x (κx, y, t) =
1

Iφk

φk,x (κx, y, t) with φk,x (κx, y, t) =
1

2u2
τ

[û (κx, y, t) · û∗ (κx, y, t)] , (3)

φnep,x (κx, y, t) =
1

Iφep

φep,x (κx, y, t) with φep,x (κx, y, t) = Ĉ ′ (κx, y, t) · Ĉ ′
∗

(κx, y, t) , (4)

where Iφ• is the integral of 〈φ•,x〉y over −∞ < κx <∞, the hat operator stands for the Fourier transform along the

streamwise x-direction, •̂ = Fx (•), and the star superscript denotes the complex conjugate. Although the integrals
Iφk

and Iφep
strongly depend on the discretization as discussed previously, the normalized spectral densities remain

remarkably similar on the different meshes. This suggests that the physical mechanism responsible for the creation of
turbulence remains mostly unaffected by the mesh discretization. The effect of a poor spatial resolution manifests itself
mostly by the global reduction of the turbulent intensity across all scales. It is worth noting that the 1024×288 mesh,
i.e., the coarsest discretization still providing a relatively accurate solution, is also the coarsest mesh that properly

captures a scale that is
√

Sc = 10 times smaller than the computed wall Kolmogorov length scale ηK =
(
ν3/εwall

)1/4
.

This suggests that Batchelor theory for passive scalars provides a good estimate of the smallest scales, even for an
active scalar like in EIT. Note finally that the computed wall Kolmogorov scale ηK is about three times larger than
the viscous length scale δν .

Finally, the diffusive effect of a finite Schmidt number equal to 100 is evaluated by comparison with simulations
using Sc = ∞. As zero-diffusion polymers should theoretically lead to infinitely small scales, the effect of the finite
grid used in simulations is assessed by considering three different grid resolutions. The normalized turbulent kinetic
and elastic energy spectra are shown in Figure 4. It can be observed that the smallest scales for Sc = ∞ on finite
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FIG. 4. Wall-normal and time-averaged normalized streamwise spectra of the turbulent kinetic energy k and elastic energy
spectra ep for different discretizations and Schmidt numbers at Reτ = 40, Wiτ = 310: Sc = 100, 4096×768 (dashed); Sc = ∞,
1280×384; Sc = ∞, 2080×480 and Sc = ∞, 4096×768. Wavenumbers are pre-multiplied by the computed wall Kolmogorov

length scale ηK =
(
ν3/εwall

)1/4
.

meshes are slightly affected by numerical errors, as the diffusive cut-off is not physical but numerical, dictated by
the finite size of the smallest grid cells. Part of the energy of the unresolved scales thus piles-up at the end of the
spectrum. However, these numerical errors are small and mainly confined at the small scales. Moreover, refining the
mesh reduces the impact of these numerical errors. Note that the spectra are here normalized by their respective
integrated value. The integrals Iφk

and Iφep
are therefore reported in table I for the three cases. The amount of

turbulent kinetic energy in the flow is larger for Sc = ∞ compared to a finite Schmidt number of 100, indicating
that a Schmidt number as large as 102 has still a measurable diffusive effect on the solution for the flow conditions
considered. Additionally, a finer spatial resolution significantly increases the fluctuations of both the velocity and
polymer extension, as a larger portion of the spectrum is captured. This again highlights the importance of small
scales in the dynamics of EIT.

The behavior of the solution for Sc =∞ on grids of finite size results from the dissipation and dispersion introduced
by the numerical scheme, similarly to what is observed around shocks in supersonic flows. The adequate grid size is
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TABLE I. Turbulent kinetic energy integral Iφk and fluctuating elastic energy integral Iφep
for Reτ = 40, Wiτ = 310.

nx × ny Sc Iφk Iφep

A 4096×768 100 1.53 · 10−2 1.05 · 10−2

B 1280×384 ∞ 1.53 · 10−2 0.87 · 10−2

C 2080×480 ∞ 1.62 · 10−2 0.88 · 10−2

D 4096×768 ∞ 1.68 · 10−2 1.04 · 10−2

thus challenging to estimate a priori. This is further illustrated by comparing global flow statistics obtained with two
codes using different numerical schemes. The mean profiles of streamwise velocity and polymer elongation are shown
in Figure 5 for Reτ = 85, Wiτ = 40, Sc = ∞. The two codes mainly differ in their discretization of the advective
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FIG. 5. Mean profiles of the streamwise velocity (left) and polymer elongation (right) for Reτ = 85, Wiτ = 40, Sc =∞. The
black profiles are obtained with code A using a mesh with 1024×288 grid points whereas the red profiles are obtained with
code B using a mesh with 512×128 grid points.

term u · ∇C in the conformation tensor transport equation. This term is critical, as it is responsible for the creation
of small elastic scales that are necessary to sustain elasto-inertial turbulence. Code A features a third-order WENO
scalar interpolation on a staggered grid, while code B relies on a fourth-order compact interpolation scheme on a
collocated grid. Because the third-order WENO scheme is more dissipative, code A requires a finer mesh than code
B for converged results, as shown in Figure 5. Nonetheless, if an adequate grid resolution is used, both codes lead to
the same mean profiles.

Overall, this supplementary material demonstrates that:

• the critical Schmidt number below which the flow becomes laminar depends on the flow conditions; in particular,
elasto-inertial turbulence at larger Reynolds number remains turbulent for lower Schmidt numbers;

• the Batchelor length scale ηB = ηKSc−1/2 is a good estimation of the smallest elastic scale for finite Schmidt
numbers;

• a poor spatial resolution reduces the turbulence intensity in the flow but does not significantly modify its
dynamical behaviour;

• the flow solution obtained using zero-diffusion polymers (Sc =∞) converges as the spatial resolution is increased;

• the discretization necessary to obtain an accurate solution for Sc = ∞ depends on the flow conditions and on
the numerical schemes.

These conclusions suggest that the important observations described in the main article are not artefacts of the
numerical approach, but indeed represent the actual physics of such flows.


