Cajochen, C., Khalsa, S. B., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. Am J Physiol 277, R640-649 (1999).
Shekleton, J. A. et al. Improved neurobehavioral performance during the wake maintenance zone. Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine 9, 353-362, https://doi.org/10.5664/jcsm.2588 (2013).
Dijk, D. J. & Czeisler, C. A. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166, 63-68 (1994).
Muto, V. et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 353, 687-690, https://doi.org/10.1126/science.aad2993 (2016).
Wu, J. C. et al. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep 14, 155-162 (1991).
Chee, M. W. et al. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. Neuroimage 31, 419-428 (2006).
Mu, Q. et al. Decreased cortical response to verbal working memory following sleep deprivation. Sleep 28, 55-67 (2005).
Thomas, M. et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9, 335-352 (2000).
Ma, N., Dinges, D. F., Basner, M. & Rao, H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38, 233-240, https://doi.org/10.5665/sleep.4404 (2015).
Cajochen, C., Knoblauch, V., Krauchi, K., Renz, C. & Wirz-Justice, A. Dynamics of frontal EEG activity, sleepiness and body temperature under high and low sleep pressure. Neuroreport 12, 2277-2281 (2001).
Dijk, D. J., Duffy, J. F. & Czeisler, C. A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res 1, 112-117 (1992).
Peigneux, P. In Sleepiness and Human Impact Assessment (eds Sergio Garbarino, Lino Nobili, & Giovanni Costa) 9-22 (Springer Milan, 2014).
Dinges, D. F. & Powell, J. W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society 17, 625-655 (1985).
Achermann, P. & Borbely, A. A. Mathematical models of sleep regulation. Front Biosci 8, s683-693 (2003).
Dijk, D. J. & Franken, P. In Principles and Practice of Sleep Medicine (ed Roth T Kryger MH, Dement WC) 418-435 (Elsevier Saunders, 2005).
Graw, P., Krauchi, K., Knoblauch, V., Wirz-Justice, A. & Cajochen, C. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav 80, 695-701 (2004).
Drummond, S. P. et al. The neural basis of the psychomotor vigilance task. Sleep 28, 1059-1068 (2005).
Achermann, P., Dijk, D. J., Brunner, D. P. & Borbely, A. A. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 31, 97-113 (1993).
Strogatz, S. H., Kronauer, R. E. & Czeisler, C. A. Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia. Am J Physiol 253, R172-178 (1987).
Dijk, D. J. & Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves and sleep spindle activity in humans. J Neurosci 15, 3526-3538 (1995).
Jones, B. E. Arousal systems. Front Biosci 8, s438-451 (2003).
Tewari, A., Jog, R. & Jog, M. S. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures inMotor Control. Frontiers in systems neuroscience 10, 17, https://doi.org/10.3389/fnsys.2016.00017 (2016).
Chee, M. W. & Asplund, C. L. In Neuroimaging of Sleep and Sleep Disorders (eds E. A. Nofzinger, P. Maquet, & M. J. Thorpy) 137-144 (Cambridge University Press, 2013).
Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78-81 (2004).
Huber, R. et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nature neuroscience 9, 1169-1176, https://doi.org/10.1038/nn1758 (2006).
Asplund, C. L. & Chee, M. W. Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas. Neuroimage 82, 326-335, https://doi.org/10.1016/j.neuroimage.2013.05.119 (2013).
Chee, M. W. et al. Effects of sleep deprivation on cortical activation during directed attention in the absence and presence of visual stimuli. Neuroimage 58, 595-604, https://doi.org/10.1016/j.neuroimage.2011.06.058 (2011).
Van Dongen, H. P., Belenky, G. & Krueger, J. M. A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Current topics in medicinal chemistry 11, 2414-2422 (2011).
Pigarev, I. N., Nothdurft, H. C. & Kastner, S. Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8, 2557-2560 (1997).
Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature reviews. Neuroscience 9, 910-919, https://doi. org/10.1038/nrn2521 (2008).
Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443-447, https://doi.org/10.1038/nature10009 (2011).
Deboer, T., Vansteensel, M. J., Detari, L. & Meijer, J. H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6, 1086-1090 (2003).
Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A. & Dijk, D. J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. American Journal of Physiology Regulatory Integrative and Comparative Physiology 277, R1152-R1163 (1999).
Drummond, S. P. & Brown, G. G. The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 25, S68-73 (2001).
Maire, M. et al. Sleep ability mediates individual differences in the vulnerability to sleep loss: evidence from a PER3 polymorphism. Cortex; a journal devoted to the study of the nervous system and behavior 52, 47-59, https://doi.org/10.1016/j.cortex.2013.11.008 (2014).
Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17, 613-618 (2007).
Bachmann, V. et al. Functional ADA Polymorphism Increases Sleep Depth and Reduces Vigilant Attention in Humans. Cereb Cortex 22, 962-970, doi:bhr173 [pii]10.1093/cercor/bhr173 (2012).
Wright, K. P., Lowry, C. A. & Lebourgeois, M. K. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 5, 50, https://doi.org/10.3389/fnmol.2012.00050 (2012).
Maire, M. et al. Fighting Sleep at Night: Brain Correlates and Vulnerability to Sleep Loss. Ann Neurol 78, 235-247, https://doi. org/10.1002/ana.24434 (2015).
Reichert, C. F. et al. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism. J Biol Rhythms 29, 119-130, https://doi.org/10.1177/0748730414524898 (2014).
Reichert, C. F. et al. The circadian regulation of sleep: impact of a functional ADA-polymorphism and its association to working memory improvements. PLoS One 9, e113734, https://doi.org/10.1371/journal.pone.0113734 (2014).
Maire, M. et al. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation. Frontiers in behavioral neuroscience 8, 59, https://doi.org/10.3389/fnbeh.2014.00059 (2014).
Reichert, C. F. et al. Cognitive brain responses during circadian wake-promotion: evidence for sleep-pressure-dependent hypothalamic activations. Scientific reports 7, 5620, https://doi.org/10.1038/s41598-017-05695-1 (2017).
Reichert, C. F., Maire, M., Schmidt, C. & Cajochen, C. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine. Biology (Basel) 5, https://doi.org/10.3390/biology5010011 (2016).
Akerstedt, T. & Gillberg, M. Subjective and objective sleepiness in the active individual. Int J Neurosci 52, 29-37 (1990).
Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983-997, https://doi.org/10.2307/2533558 (1997).
Rechtschaffen, A. & Kales, A. A. A manual of standardized terminology, techniques and scoring system of sleep stages of human subjects. Bethesda, MD: US Dept of Health, Education and Welfare, Public Health Service (1968).
Kolodyazhniy, V. et al. Estimation of human circadian phase via a multi-channel ambulatory monitoring system and a multiple regression model. Journal of biological rhythms 26, 55-67, https://doi.org/10.1177/0748730410391619 (2011).
Berthomier, C. et al. Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep 30, 1587-1595 (2007).
Borbely, A. A. & Achermann, P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14, 557-568 (1999).
Schmidt, C. et al. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science 324, 516-519 (2009).
Baroncini, M. et al. MRI atlas of the human hypothalamus. Neuroimage 59, 168-180, https://doi.org/10.1016/j. neuroimage.2011.07.013 (2012).
Portas, C. M. et al. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci 18, 8979-8989 (1998).
Buysse, D. J., Reynolds, C. F. 3rd, Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28, 193-213, doi:0165-1781(89)90047-4 [pii] (1989).
Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14, 540-545 (1991).
Roenneberg, T., Wirz-Justice, A. & Merrow, M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18, 80-90 (2003).
Beck, A. T., Steer, R. A. & Brown, G. K. BDI-II, Beck depression inventory: manual. 2nd edn, (Harcourt Brace, 1996).