Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Mehrian, Mohammad ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Guyot, Y.; Biomechanics Research UnitGIGA In Silico MedicineUniversity of LiègeLiègeBelgium, PrometheusThe Division of Skeletal Tissue EngineeringKU LeuvenLeuvenBelgium
Papantoniou, I.; PrometheusThe Division of Skeletal Tissue EngineeringKU LeuvenLeuvenBelgium, Skeletal Biology and Engineering Research CenterKU LeuvenLeuvenBelgium
Olofsson, S.; Department of ComputingImperial College LondonLondonUnited Kingdom
Sonnaert, M.; PrometheusThe Division of Skeletal Tissue EngineeringKU LeuvenLeuvenBelgium, Department of Metallurgy and Materials EngineeringKU LeuvenLeuvenBelgium
Misener, R.; Department of ComputingImperial College LondonLondonUnited Kingdom
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Maximizing neotissue growth kinetics in a perfusion bioreactor: An in silico strategy using model reduction and Bayesian optimization
Aloisi, M., Bruno, V., Cannavò, F., Ferranti, L., Mattia, M., Monaco, C., & Palano, M. (2012). Are the source models of the M 7.1 1908 Messina Straits earthquake reliable? Insights from a novel inversion and a sensitivity analysis of levelling data. Geophysical Journal International, 192(3), 1025–1041.
Bellouquid, A., & Delitala, M. (2006). Mathematical modeling of complex biological systems. Birkhũser, Boston: Springer.
Bobbert, F., Lietaert, K., Eftekhari, A., Pouran, B., Ahmadi, S., Weinans, H., & Zadpoor, A. (2017). Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomaterialia, 53, 572–584.
Brochu E., Cora V. M., De Freitas N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning arXiv preprint arXiv: 1012.2599.
Carlier, A., van Gastel, N., Geris, L., Carmeliet, G., & Van Oosterwyck, H. (2014). Size does matter: An integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Computional Biology, 10(11), e1003888.
Chapman, L. A., Shipley, R. J., Whiteley, J. P., Ellis, M. J., Byrne, H. M., & Waters, S. L. (2014). Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling. PLoS ONE, 9(8), e105813.
Chatterjee, S., Laudato, M., & Lynch, L. A. (1996). Genetic algorithms and their statistical applications: An introduction. Computational Statistics and Data Analysis, 22(6), 633–651.
Chen, A. K.-L., Chew, Y. K., Tan, H. Y., Reuveny, S., & Oh, S. K. W. (2015). Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Cytotherapy, 17(2), 163–173.
Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39, 315. https://doi.org/10.1007/s10462-011-9276-0
De Bari, C., Dell'Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I. M., Archer, C. W., … Pitzalis, C. (2006). Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis and Rheumatism, 54(4), 1209–1221.
dos Santos, F., Campbell, A., Fernandes-Platzgummer, A., Andrade, P. Z., Gimble, J. M., Wen, Y., … Cabral, J. (2014). A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnology and Bioengineering, 111(6), 1116–1127.
Egger, D., Spitz, S., Fischer, M., Handschuh, S., Glösmann, M., Friemert, B., … Kasper, C. (2017). Application of a parallelizable perfusion bioreactor for physiologic 3D cell culture. Cells Tissues Organs, 203(5), 316–326.
Eibes, G., dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M., da Silva, C. L., & Cabral, J. M. (2010). Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 146(4), 194–197.
Elliott, N. T., & Yuan, F. (2011). A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Sciences, 100(1), 59–74.
Eriksson, O., & Tegnér, J. (2016). Modeling and model simplification to facilitate biological insights and predictions. In Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem. (2016, this volume)
Eriksson O., Zhou Y., Tegnér J. Modeling complex cellular networks-Robust switching in the cell cycle ensures a piecewise linear reduction of the regulatory network; 2004. IEEE. p 117–123.
Ginai, M., Elsby, R., Hewitt, C. J., Surry, D., Fenner, K., & Coopman, K. (2013). The use of bioreactors as in vitro models in pharmaceutical research. Drug Discovery Today, 18(19), 922–935.
Grayson, W. L., Marolt, D., Bhumiratana, S., Fröhlich, M., Guo, X. E., & Vunjak-Novakovic, G. (2011). Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 108(5), 1159–1170.
Guyot Y. 2015. A multiphysics multiscale computational framework for the simulation of perfusion bioreactor processes in bone tissue engineering [PhD thesis]: Université de Liège. 99–119 p.
Guyot, Y., Luyten, F., Schrooten, J., Papantoniou, I., & Geris, L. (2015). A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnology and Bioengineering, 112(12), 2591–2600.
Guyot, Y., Papantoniou, I., Luyten, F., & Geris, L. (2016). Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: A 3D computational model of a complete scaffold. Biomechanics and Modeling in Mechanobiology, 15(1), 169–180.
Halász, A., Kumar, V., Imielinski, M., Belta, C., Sokolsky, O., Pathak, S., & Rubin, H. (2007). Analysis of lactose metabolism in E. coli using reachability analysis of hybrid systems. IET Systems Biology, 1(2), 130–148.
Hassan, S., Simaria, A. S., Varadaraju, H., Gupta, S., Warren, K., & Farid, S. S. (2015). Allogeneic cell therapy bioprocess economics and optimization: Downstream processing decisions. Regenerative Medicine, 10(5), 591–609.
Hoffman M. W., Shahriari B. Modular mechanisms for bayesian optimization; 2014. p 1–5.
Hossain, M. S., Bergstrom, D., & Chen, X. (2015). Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor. Biomechanics and Modeling in Mechanobiology, 14(2), 333–344.
Hossain, S., Bergstrom, D., & Chen, X. (2015). A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor. Biotechnology and Bioengineering, 112(12), 2601–2610.
Impens, S., Chen, Y., Mullens, S., Luyten, F., & Schrooten, J. (2010). Controlled cell-seeding methodologies: A first step toward clinically relevant bone tissue engineering strategies. Tissue Engineering Part C: Methods, 16(6), 1575–1583.
Jolliffe, H. G., & Gerogiorgis, D. I. (2015). Process modelling and simulation for continuous pharmaceutical manufacturing of ibuprofen. Chemical Engineering Research and Design, 97, 175–191.
Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.
Kabra, S., Shaik, M. A, & Rathore, A. S. (2013). Multi-period scheduling of a multi-stage multi-product bio-pharmaceutical process. Computers and Chemical Engineering, 57, 95–103.
Kirouac, D. C., & Zandstra, P. W. (2008). The systematic production of cells for cell therapies. Cell Stem Cell, 3(4), 369–381.
Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1), 97–106.
Lambrechts, T., Papantoniou, I., Sonnaert, M., Schrooten, J., & Aerts, J. M. (2014). Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnology and Bioengineering, 111(10), 1982–1992.
Liu, S., Farid, S. S, & Papageorgiou, L. G. (2016). Integrated optimization of upstream and downstream processing in biopharmaceutical manufacturing under uncertainty: A chance constrained programming approach. Industrial and Engineering Chemistry Research, 55(16), 4599–4612.
Luna, M., & Martínez, E. (2014). A Bayesian approach to run-to-run optimization of animal cell bioreactors using probabilistic tendency models. Industrial and Engineering Chemistry Research, 53(44), 17252–17266.
Malhotra, R., Singh, N., & Singh, Y. (2011). Genetic algorithms: Concepts, design for optimization of process controllers. Computer and Information Science, 4(2), 39.
Martínez, E. C., Cristaldi, M. D., & Grau, R. J. (2013). Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning. Computers and Chemical Engineering, 49, 37–49.
Melchels, F. P., Tonnarelli, B., Olivares, A. L., Martin, I., Lacroix, D., Feijen, J., … Grijpma, D. W. (2011). The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 32(11), 2878–2884.
Misener, R., Garí, M. F., Rende, M., Velliou, E., Panoskaltsis, N., Pistikopoulos, E. N., & Mantalaris, A. (2014). Global superstructure optimisation of red blood cell production in a parallelised hollow fibre bioreactor. Computers and Chemical Engineering, 71, 532–553.
Močkus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference (pp. 400–404). Berlin Heidelberg: Springer.
Panchalingam, K. M., Jung, S., Rosenberg, L., & Behie, L. A. (2015). Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: A review. Stem Cell Research and Therapy, 6(1), 225.
Papantoniou, I., Chai, Y. C., Luyten, F. P., & Schrooten, J. (2013). Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Engineering Part C: Methods, 19(8), 596–609.
Papantoniou, I., Guyot, Y., Sonnaert, M., Kerckhofs, G., Luyten, F. P., Geris, L., & Schrooten, J. (2014). Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnology and Bioengineering, 111(12), 2560–2570.
Snoek J., Larochelle H., Adams R. P. Practical bayesian optimization of machine learning algorithms; 2012. p 2951–2959.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1), 271–280.
Sonnaert, M., Kerckhofs, G., Papantoniou, I., Van Vlierberghe, S., Boterberg, V., Dubruel, P., … Geris, L. (2015). Multifactorial optimization of contrast-enhanced nanofocus computed tomography for quantitative analysis of neo-tissue formation in tissue engineering constructs. PLoS ONE, 10(6), e130227.
Sonnaert, M., Luyten, F. P., Schrooten, J., & Papantoniou, I. (2015). Bioreactor-based online recovery of human progenitor cells with uncompromised regenerative potential: A bone tissue engineering perspective. PLoS ONE, 10(8), e136875.
Sonnaert, M., Papantoniou, I., Bloemen, V., Kerckhofs, G., Luyten, F., & Schrooten, J. (2017). Human periosteal-derived cell expansion in a perfusion bioreactor system: Proliferation, differentiation and extracellular matrix formation. Journal of Tissue Engineering and Regenerative Medicine, 11(2), 519–530.
Srijaya, T. C., Ramasamy, T. S., & Kasim, N. H. A. (2014). Advancing stem cell therapy from bench to bedside: Lessons from drug therapies. Journal of Translational Medicine, 12(1), 243.
Steeves, J. D. (2015). Bench to bedside: Challenges of clinical translation. Progress in Brain Research, 218, 227–239.
Ulmasov D., Baroukh C., Chachuat B., Deisenroth M. P., Misener R. 2016. Bayesian optimization with dimension scheduling: Application to biological systems.
Van Bael, S., Chai, Y. C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., … Schrooten, J. (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 8(7), 2824–2834.
Van der Stok, J., Van der Jagt, O. P., Amin Yavari, S., De Haas, M. F., Waarsing, J. H., Jahr, H., … Zadpoor, A. A. (2013). Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. Journal of Orthopaedic Research, 31(5), 792–799.
Wuertz, K., Godburn, K., & Iatridis, J. C. (2009). MSC response to pH levels found in degenerating intervertebral discs. Biochemical and Biophysical Research Communications, 379(4), 824–829.
Yoo, D.-J. (2012). Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. International Journal of Precision Engineering and Manufacturing, 13(4), 527–537.
Zhou, X., Holsbeeks, I., Impens, S., Sonnaert, M., Bloemen, V., Luyten, F., & Schrooten, J. (2013). Noninvasive real-time monitoring by AlamarBlue® during in vitro culture of three-dimensional tissue-engineered bone constructs. Tissue Engineering Part C: Methods, 19(9), 720–729.