Higgins, I. J., & Lowe, C. R. Introduction to the principles and applications of biosensors. Philos Trans R Soc Lond B Biol Sci. 316, 3-11 (1987).
Byrne, B., Stack, E., Gilmartin, N., & O'Kennedy, R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 9, 4407-4445 (2009).
Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 85, 5879-5883 (1988).
Mechaly, A., Zahavy, E., & Fisher, M. Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl Environ Microbiol. 74, 818-822 (2008).
Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature. 363, 446-448 (1993).
Sheriff, S., & Constantine, K. L. Redefining the minimal antigen-binding fragment. Nat Struct Biol. 3, 733-736 (1996).
Stijlemans, B. et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem. 279, 1256-1261 (2004).
Thanongsaksrikul, J. et al. A V H H that neutralizes the zinc metalloproteinase activity of botulinum neurotoxin type A. J Biol Chem. 285, 9657-9666 (2010).
Huang, L. et al. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 21, 483-490 (2005).
Yolken, R. H., Wee, S. B., & Van Regenmortel, M. The use of beta-lactamase in enzyme immunoassays for detection of microbial antigens. J Immunol Methods. 73, 109-123 (1984).
Kojima, M. et al. Activation of circularly permutated beta-lactamase tethered to antibody domains by specific small molecules. Bioconjug Chem. 22, 633-641 (2011).
Iwai, H., Kojima-Misaizu, M., Dong, J., & Ueda, H. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains. Bioconjugate Chem. 27, 868-873 (2016).
Vandevenne, M. et al. The Bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci. 16, 2260-2271 (2007).
Vandevenne, M. et al. Rapid and easy development of versatile tools to study protein/ligand interactions. Protein Eng Des Sel. 21, 443-451 (2008).
Crasson, O. et al. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel. 28, 451-460 (2015).
Yunus, S., Attout, A.,Vanlancker, G., Bertrand, P., Ruth, N., Galleni, G. A method to probe electrochemically active material state in portable sensor applications. Sensors and Actuators B: Chemical. 156, 35-42 (2011).
Bogaerts, P., Yunus, S., Massart, M., Huang, T. D. & Glupczynski, Y. Evaluation of the BYG Carba Test, a New Electrochemical Assay for Rapid Laboratory Detection of Carbapenemase-Producing Enterobacteriaceae. J Clin Microbiol. 54, 349-358 (2016).
Wang, L. P., Wang, W., Di, L., Lu, Y. N., & Wang, J. Y. Protein adsorption under electrical stimulation of neural probe coated with polyaniline. Colloids Surf B Biointerfaces. 80, 72-78 (2010).
Piletsky, S., Piletska, E., Bossi, A., Turner, N., & Turner, A. Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. Biotechnol. Bioeng. 82, 86-92 (2003).
Khatkhatay, M. I., & Desai, M. A comparison of performances of four enzymes used in ELISA with special reference to beta-lactamase. J Immunoassay. 20, 151-183 (1999).
Worn, A. et al. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem. 275, 2795-2803 (2000).
Ostermeier, M. Engineering allosteric protein switches by domain insertion. Protein Eng Des Sel. 18, 359-364 (2005).
Choi, J. H., Laurent, A. H., Hilser, V. J., & Ostermeier, M. Design of protein switches based on an ensemble model of allostery. Nat Commun. 6, 6968 (2015).
Collinet, B. et al. Functionally accepted insertions of proteins within protein domains. J Biol Chem. 275, 17428-17433 (2000).
Betton, J. M., Jacob, J. P., Hofnung, M., & Broome-Smith, J. K. Creating a bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding protein. Nat Biotechnol. 15, 1276-1279 (1997).
Ay, J., Gotz, F., Borriss, R., & Heinemann, U. Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A. 95, 6613-6618 (1998).
Ruth, N. et al. DNA vaccination for the priming of neutralizing antibodies against non-immunogenic STa enterotoxin from enterotoxigenic Escherichia coli. Vaccine. 23, 3618-3627 (2005).
Zervosen, A. et al. Characterization of the cattle serum antibody responses against TEM beta-lactamase and the nonimmunogenic Escherichia coli heat-stable enterotoxin (STaI). FEMS Immunol Med Microbiol. 54, 319-329 (2008).
Chevigne, A. et al. Use of bifunctional hybrid beta-lactamases for epitope mapping and immunoassay development. J Immunol Methods. 320, 81-93 (2007).
Ke, W. et al. Structure of an engineered beta-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PloS One. 7, e39168 (2012).
Saeedfar, K., Heng, L. Y., Ling, T. L., & Rezayi, M. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors (Basel). 13, 16851-16866 (2013).
Orazio, P. Biosensors in clinical chemistry. Clin Chim Acta. 334, 41-69 (2003).
Szucs, J., Pretsch, E., & Gyurcsanyi, R. E. Potentiometric enzyme immunoassay using miniaturized anion-selective electrodes for detection. Analyst. 134, 1601-1607 (2009).
Ding, J., Wang, X., & Qin, W. Pulsed galvanostatic control of a polymeric membrane ion-selective electrode for potentiometric immunoassays. ACS Appl Mater Interfaces. 5, 9488-9493 (2013).
Wang, X. et al. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/ peroxidase mimetic-based potentiometric biosensing. Anal Chem. 86, 4416-4422 (2014).
Grieshaber, D., MacKenzie, R., Voros, J., & Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel). 8, 1400-1458 (2008).
Bakker, E., & Pretsch, E. Nanoscale potentiometry. Trends Analyt Chem. 27, 612-618 (2008).
Zhang, D., & Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 75, 273-284 (2016).
Nemiroski, A. et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A. 111, 11984-11989 (2014).
Commission, T. E. Price Waterhouse Coopers: Socio-economic impact of mHealth- An assessment report for the European Union. (2013).