[en] This article presents a design methodology based on a stiffness and volume optimization algorithm for three-dimensional nonlinear hyperstatic and pre-stressed structures composed of elements only subjected to axial forces, with a special emphasis on tensegrity structures. The algorithm is based on dimensionless numbers called morphological indicators that allow finding, within a given family of structures, the geometry related to a maximum stiffness or a minimum volume of materials or the best ratio between stiffness and volume. The algorithm takes into account the buckling of the struts and different materials for cables and struts. This article first demonstrates the optimization algorithm and then gives numerical confirmations and examples.
Disciplines :
Civil engineering
Author, co-author :
Latteur, Pierre ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Feron, Jonas
Denoël, Vincent ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Language :
English
Title :
A design methodology for lattice and tensegrity structures based on a stiffness and volume optimization algorithm using morphological indicators
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Skelton RE and De Oliveira M. Tensegrity systems. Berlin: Springer Science+Business Media, 2009.
Tibert AG and Pellegrino S. Review of form-finding methods for tensegrity structures. Int J Solids Struct 2003; 38: 5223–5252.
Tran HC and Lee J. Advanced form-finding of tensegrity structures. Comput Struct 2010; 88: 237–246.
Zhang JY and Ohsaki M. Adaptative force density method for form-finding problem of tensegrity structures. Int J Solids Struct 2006; 43: 5658–5673.
Gomez Estrada G, Bungartz H-J and Mohrdieck C. Numerical form-finding of tensegrity structures. Int J Solids Struct 2006; 43: 6855–6868.
De Jager B and Skelton E. Symbolic stiffness optimization of planar tensegrity structures. J Intel Mat Syst Str 2004; 15: 181–193.
Masic M, Skelton RE and Gill PE. Optimization of tensegrity structures. Int J Solids Struct 2006; 43: 4687–4703.
Rhode-Barbarigos L, Bel Hadj Ali N, Motro R, et al. Designing tensegrity modules for pedestrian bridges. Eng Struct 2010; 32: 1158–1167.
Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi A, et al. Design optimization and dynamic analysis of a tensegrity-based footbridge. Eng Struct 2010; 32: 3650–3659.
Zalewski W. The flow of forces. In: Excerpt from notes on structural behavior for architecture students. MIT Press, 1980.
Michell AGM. The limit of economy of material in frame structures. Philos Mag 1904; 8(47): 589–597.
Skelton RE and De Oliveira MC. Optimal tensegrity structures in bending: the discrete Michell Truss. J Frankl Inst 2010; 347: 257–283.
Zalewski W and Kus S. Shaping structures for least weight. In: IASS Symposium “Conceptual Design of Structures”, Stuttgart, 7 November 1996, pp. 376–383.
Quintas Ripoll V. Sobre el teorema de Maxwell y la optimization de arcos de cubierta. Inf Constr 1989; 40(400): 57–70.
Quintas Ripoll V. Sobre las formas de minimo volumen de las celosias de seccion constante. Inf Constr 1992; 43(418): 61–67.
Samyn P. Etude comparée du volume et du déplacement de structures isostatiques bidimensionnelles sous charges ver-ticales entre deux appuis. Thèse de doctorat, Université de Liège, Liège, 2000.
Samyn P. Etude de la morphologie des structures à l’aide des indicateurs de volume et de déplacement. Publication de la Classe des Sciences de l’Académie Royale de Belgique, collection in-4°, 3e série, tome V, 2004.
Latteur P. Optimisation et prédimensionnement des treil-lis, arcs, poutres et câbles sur base d’indicateurs mor-phologiques. Application aux structures soumises en partie ou en totalité au flambement. Thèse de doctorat, Vrije Universiteit Brussel, Brussel, 2000.
Van Steirteghem J. A contribution to the optimisation of structures using morphological indicators: (in)stability and dynamics. Thèse de doctorat, Vrije Universiteit Brussel, Brussel, 2006.
Vandenbegh T. Benchmarking optimization at conceptual design stage with morphological indicators. PhD Thesis, Vrije Universiteit Brussel, 2010.
Vandenbergh T and De Wilde P. A review on conceptual design with morphological indicators. Int J Struct Eng 2010; 1(3/4): 280–298.
Zhang P and Feng J. Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness. Int J Solids Struct 2017; 106–107: 68–90.
Ashwear N, Tamadapu G and Eriksson A. Optimization of modular tensegrity structures for high stiffness and frequency separation requirements. Int J Solids Struct 2016; 80: 297–309.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.