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Introduction and historic of 
morphological indicators
Tensegrity structures are part of a fascinating field of 
structural engineering and architecture and Skelton and De 
Oliveira1 point out that they could bring innovative solu-
tions by taking inspiration from behaviors observed in the 
nature (deployment, control, etc.). But the fact that very 
few tensegrity-based civil structures have been built 
around the world illustrates that they are largely unknown, 
or at least a source of mistrust, to most practitioners, archi-
tects, and engineers. There are several reasons that can 
explain this fact, but among them, certainly the design and 
construction complexity and the nonlinear behavior which 
implies pre-stressing to reach the desired stiffness (Figure 
1) and which can lead to an adverse effect on the volume 
of materials used for the structure. For tensegrity struc-
tures, the optimization of stiffness and volume is thus, 
more than for any other kind of structure, a key aspect.

An optimization and form-finding problem is often, for 
the designer, a great challenge due to the great amount of 
parameters that characterize a structure: the span, the 
width, the height, the shape, the characteristics of the cross 

sections, the buckling lengths, the characteristics of the 
materials, the loads, the pre-stress, and so on. However, 
optimization and form-finding algorithms can lead the 
designers to select the feasible ranges of tensegrity-based 
civil structures. Skelton and De Oliveira1 already analyti-
cally showed that some tensegrity topologies have a very 
efficient behavior in compression and bending. Tibert and 
Pellegrino2 summarize the form-finding methods for 
tensegrity structures and classify them into two categories: 
the first one contains kinematical methods which deter-
mine the configuration of either maximal length of the 
struts or minimal length of the cables, while the second 
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one searches for equilibrium configurations that allow the 
existence of a pre-stress state with required characteristics 
(among them, a popular one is the force density method3–5). 
Concerning the stiffness optimization (or stiffness-to-mass 
(or volume) optimization), several authors added signifi-
cant contribution. De Jager and Skelton6 developed a 
numerical method to find the geometries of planar tenseg-
rity structures with optimal stiffness or stiffness-to-mass 
properties and to offer guidelines in the design. Masic 
et al.7 developed a very efficient numerical algorithm that 
allows finding the topology, geometry, and pre-stress of a 
structure that yields optimal design for different scenarios. 
The algorithm takes into account the buckling of the struts 
and three-dimensional (3D) tensegrity structures. Starting 
from an initial layout, it allows determining the best node 
positions, best number of stages, and best geometrical 
ratio. In this sense, this study is thus significant and is 
likely to provide a very useful tool for the designers.

Considering the design of pedestrian bridges com-
posed of tensegrity modulus in particular, Rhode-
Barbarigos et al.8 propose a design method which allows 
finding the optimum section sizes considering the self-
weight, a limited deflection, and the buckling of the 
struts, for a structure defined by its topology, span, 
height, materials, loads, pre-stress, and number of mod-
ulus. The structural performances, such as the displace-
ments, are then evaluated through parametric studies of 
the topology of modulus, the level of pre-stress, and the 
materials used for cables and struts. In the same way, Bel 
Hadj Ali et al.9 study the design of pedestrian bridges 
considering the dynamical behavior of a defined struc-
ture. The natural frequencies are then evaluated through 
parametric studies of the pre-stress level and cross sec-
tion of struts and cables.

This article also focuses on the designer’s point of view 
by providing him with an “as simple as possible” design 
methodology, guided by the wish of simplifying the opti-
mization and the design process by reducing the amount of 
parameters, by grouping them into dimensionless numbers 
called morphological indicators.

Their first traces appear in 1980, when Zalewski,10 a 
professor at the Massachusetts Institute of Technology, 
writes notes for his students in architecture. In his study, 
Zalewski compares the weight and the stiffness of various 
types of two-dimensional (2D) trusses whose morphology 
is inspired, on one hand, by the observation of flow con-
straints in the beams and, on the other hand, by Michell11 
studies in 1904. A significant extension of Michell’s theory 
was done by Skelton and De Oliveira12 in 2010. In his 
document, Zalewski already shows the relationship 
between the volume and deflection of simple structures 
and their geometric slenderness L/H (L and H being, 
respectively, the span and the height of the structure). 
Zalewski and Kus13 have summarized their studies in a 
publication presented at an IASS congress in 1996.

Then, Quintas Ripoll14,15 publishes in 1989 and 1992 
two articles about the optimization of simple lattices and 
bows, also highlighting the direct link between their vol-
ume and their geometric slenderness L/H.

In 1997, Samyn compares a large amount of structures 
and also shows that their self-weight can be studied 
through a dimensionless number that he calls the indicator 
of volume. All his publications, including those concerning 
his PhD thesis submitted in 2000,16 are summarized in a 
book published in 2004 in the class of the Belgian Royal 
Academy of Sciences.17

From 1998 on, Latteur extends the applications of the 
indicators of volume and displacement by developing 
the concept of buckling indicator and efficiency curve. 
The scope of the theory is then extended to 3D structures 
subjected to buckling and random load cases.18 He also 
highlights new indicators, such as the self-weight indica-
tor Φ = ρL/σ, the rotation indicator Θ = Eθ/σ and the 
bending indicator Ζ = Ah2/I.

In his thesis presented in 2006, Van Steirteghem19 has 
extended the theory by developing a first frequency indica-
tor, which allowed to significantly expand fields of appli-
cation of this theory to dynamically loaded structures.

In 2010, the PhD thesis of Vandenbergh20 extends the 
application field of morphological indicators by considering 

Figure 1. On the left side, example of a very simple nonlinear structure, for which a classical linear approach does not give any 
solution because of the zero rigidity when unloaded. On the right side, the same phenomenon is observed for an elementary 
tensegrity modulus, unstable at first order in rotation but becoming stiffer and stiffer when the angle between both triangles 
deviates from the “natural” value of 30°.
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quasi-static vibrations and global in-plane instabilities, on 
top of the traditional approach based on strength and local 
buckling.

All these researches, summarized by Vandenbergh and 
De Wilde,21 concern linear isostatic structures and mostly 
2D trusses and arches.

The aim of this article is to extend the theory of mor-
phological indicators to structures combining a nonlinear 
behavior, hyperstatic conditions, and pre-stressing, which 
is particularly the case for tensegrity structures.

Assumptions[AQ: 1]

We consider any structure:

•• Of span L, height H, and width D, rigorously, 
considered after application of pre-stress (see 
Figure 2);

•• Subjected to a particular external load �F   
acting on each of the n nodes according  
to the three directions (X, Y, Z), such as 
% % KF f F F F F

t t t t F

X Y Z Z n

F F F
n
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= ∗ =

= ∗
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with −1 1≤ ≤ti
F  and ti

F∑ =1 ;
•• Where each element i is, before application of �F , 

subjected to an axial force Pi due to the pre-stress 
(details in section “Pre-stress”). However, no pre-
stress is a particular case for which the design meth-
odology is also applicable;

•• With a nonlinear behavior, although the linear 
behavior is a particular case for which the design 
methodology is also applicable;

•• With supports anywhere and of any degree of 
redundancy;

•• With cables made out of a same material of Young’s 
modulus Ec and strength limit σc;

•• With struts made out of a same material of Young’s 
modulus Es and strength limit σs such that factor u is 
defined as u = σc/σs;

•• With struts with a cross-sectional As and a 
moment of inertia Is, such that the form factor q, 
defined as q I As s= / 2 , is supposed to be equal for 
all struts;

•• Related to an indicator of buckling Ψ developed by 
Latteur18 and such that Ψ =σ s sL qE F/ ;

•• With a maximum deflection δ somewhere, for 
instance, at mid-span and vertically;

•• With a total volume V of materials (cables and 
struts).

In this article, we use the following definitions:

•• The pre-stress state �p  is the elementary repartition 
of the axial forces in each element (with tension for 
cables and compression for struts), before applica-
tion of the external load �F ;

•• The pre-stress level β allows to multiply the values 
of �p  by a factor βF;

•• The pre-stress scenario �P  is the multiplication of 
�p  and βF;

Figure 2. Example of a footbridge composed of a succession of elementary tensegrity modulus (called here “Simplex”), with a 
deck suspended to upper nodes.
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•• A self-stress mode is a particular value of �p  which 
maintains the initial geometry of the structure;

•• A self-stress state is either a self-stress mode or the 
combination of several self-stress modes.

Other assumptions
•• L0 is the length of any element after application of 

pre-stress �P .
•• Ldef is the length of any element after application of 

the external load �F .
•• Displacements di and δ are the ones created by the 

external load �F  only, and not the pre-stress.
•• The materials have an elastic behavior with a ratio 

| | /L L Ldef ini ini−  limited to 0.01, which also 

means that L L Ldef − ≤0 0 0 01/ .  and 

L L Lini ini0 0 01− ≤/ .  or 0.99≤ | / |L Ldef 0 ≤1.01 

and 0.99≤ L Lini0 / ≤1.01. For steel, that means a 
stress that reaches 2100 MPa, which is only pos-
sible for cables with an extremely high strength 
limit. For usual steel and other materials, the ratio 
seldom exceeds 0.002.

•• For a cable (or any element remaining always in 
tension) of index i, the design criterion is[AQ: 2]

N
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For a strut of index i, the design criterion is the follow-
ing approximation of corrected Euler’s law
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In section “Generalization for struts with different cross-
sectional areas,” it is proven that the design methodology 
is valid both for a situation where each single element is 
designed according to equations (1a) and (1b), which lead 
to a fully stressed design, and for a situation where each 
cable or strut has the same section, respectively, equal to 
the most solicited cable or strut.

•• Self-weight acting as a load case is neglected, in order 
to lighten the demonstration. However, it has been 
proved that it can be taken into account via the self-
weight indicator Φ = ρL/σ developed by Latteur.18

•• In the same way, random external loads are not 
taken into account. Note that Latteur18 includes a 
large discussion about random loads for structures 
with a linear behavior.

Pre-stress
A tensegrity structure would not maintain its initial shape 
until appropriate pre-stress, called a self-stress state, is 
assigned. For a tensegrity structure with given shape, the 
choice of the self-stress state that leads to the maximum 
stiffness is itself a complex optimization problem which 
has been studied by Zhang and Feng22 with, furthermore, a 
very well-developed literature survey over this subject. 
This article first proposes two methods to compute the 
independent self-stress mode(s) of symmetric tensegrity 
structures. Then, different algorithms are presented to 
determine the self-stress state, by cleverly combining these 
self-stress modes, which maximize the global stiffness of 
the structure on the basis of a same pre-stress level.

The self-stress state could also been optimized with 
regard to the behavior of a dynamically loaded tensegrity 
structure. Ashwear et al.23 propose a method leading to an 
optimum self-stress state with relatively high stiffness of 
the structure as well as a lowest natural frequency as high 
as possible.

A judicious choice of pre-stress scenario �P  is neces-
sary, to ensure the stability of the tensegrity structure, to 
prevent some cables from slack when the external load 
case �F  is applied and, finally, to reach the desired stiff-
ness. The term “tensegrity structure” is, in this article, 
referring to a pin-jointed cables–struts assembly subjected 
to any pre-stress scenario �P , which may not be related to 
a self-stress state.

Vector �P  is composed of the nc + ns values of the axial 
force Pi in each element, cable or strut (with tension for 
cables and compression for struts). Those values are thus 
the internal axial forces in the elements that exist before 
the application of the external load �F . In this article, the 
pre-stress scenario �P  is defined as follows
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For a pre-stress state �p  judiciously chosen, βmin is 
defined as being the particular value of β that leads to a 
situation where the axial force in the least tensioned cable 
after application of the external load �F  is equal to zero, 
which means that no cable slacks

β θβ θ= ≥min with 1

In this article, θ = 1 and β = βmin will be assumed and the 
way to find the value βmin is discussed in section “Discussion 
about the value of β.” Note that one could eventually 
choose θ > 1, which is a way to improve the stiffness but 
which impacts V.
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Practically, pre-stress can be set into a tensegrity struc-
ture by introducing traction into the cables or/and com-
pression into the struts, for instance, by placing a 
mechanical device at one of their extremity. The system 
will be such that it will shorten a cable or lengthen a strut.

There exist several pre-stress scenarios �P  that guar-
anty that no cable will slack when the external load �F  is 
applied. For instance, one potentially possible scenario 
could be coming from an elongation of each strut gener-
ated by its associated mechanical device. Therefore, one of 
these possible pre-stress scenarios could be relative to a 
pre-stress state �p  which is not a self-stress state.

Section “Choice of a pre-stress scenario �P ” discusses 
in detail the assumptions made in order to make the design 
methodology relevant despite the fact that the choice of the 
pre-stress state �p  influences the stiffness and the volume.

Aim and structure of this article
Figure 2 shows an example of tensegrity footbridge com-
posed of a number S = 6 Simplex modulus, in which the deck 
is suspended to upper nodes. The following questions could 
be asked: for a given span L and a given external load case �F
, what are the values of S and of the height H that minimize 
the deflection δ at mid-span or the total volume V of materi-
als, under constraints (1a) and (1b)? And how to find a pre-
stress scenario �P  and a pre-stress state �p  compatible with 
the external load �F ? Being able to answer to these questions 
via a simple methodology is the aim of this article.

Practically, this article aims at proving that for a given 
family of structures, f being any function:

•• The deflection δ/L only depends on seven dimen-
sionless numbers, according to

δ
σ σL
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E E
S pc

c

s
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•• The volume V of materials, defined by its indicator 
of volume W, only depends on the same seven 
dimensionless numbers and u c s=σ σ/ , according 
to
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The demonstration is analytically developed  
in sections “Demonstration of relation 
δ σ σ/ ( / , / , , / , / , )L f L H L D E E pc c s s= Ψ �  for a given 
S” and “Demonstration of relation 
σ σ σs c c s sV FL f L H L D E E p u/ ( / , / , , / , / , , )= Ψ �  for a 
given S” and then confirmed numerically with examples in 
section “Numerical confirmation of equations (28) and 

(29).” The way to find �p  is detailed in sections “Choice of 
a pre-stress scenario �P ” and “Optimization algorithm.”

Assuming that equations (2a) and (2b) are correct, they 
allow to easily find the stiffest or the lightest structure, thanks 
to the curves shown in Figure 3. Indeed, assuming that

•• A pre-stress state �p  can be found and depends 
itself on parameters (L/H, L/D, Ψ, Ec/σc, Es/σs, S), 
which is justified in section “Choice of a pre-stress 
scenario �P ”;

•• The materials are chosen (Ec/σc, Es/σs, and u fixed);
•• D is proportional to H for a given family of 

structures;
•• Relations (2a) and (2b) become for a given number 

S of elementary modulus

δ
L

f
L
H

= ⎛
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,Ψ  (3a)

σ sV
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f
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Using relations (3a) and (3b), the optimization and the 
design process are thus greatly simplified, as the deflection 
δ/L and the indicator of volume W only depend on the two 
parameters L/H and Ψ. This is illustrated in Figure 3 for 
the deflection.

The algorithm used to draw Figure 3 is described in sec-
tion “Optimization algorithm” and numerical examples are 
then given in sections “Numerical confirmation of equa-
tions (28) and (29),” “Example of curves of efficiency,” 
and “Other examples: trusses and other tensegrity topolo-
gies.” The left of Figure 3 shows that for a given value of 
the buckling indicator Ψ, the minimum value of δ/L is 
numerically found, and the corresponding values (Ψ, L/H, 
L/δ) are reported on the right of Figure 3, called curve of 
efficiency.18 This process is numerically repeated for val-
ues of Ψ from 0 to 100. For a given practical case related 

Figure 3. Curves of efficiency (see sections “Numerical 
confirmation of equations (28) and (29),” “Example of curves of 
efficiency,” and “Other examples: trusses and other tensegrity 
topologies” for details and comments).
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to a given value of Ψ, the efficiency curve gives the best 
value L/H, and the associated (best) value δ/L (or L/δ).

Demonstration of relation 
δδ ΨΨ σσ σσ/ ( / , / , , / , / , )L fL H L D E E pc c s s== �  
for a given S
Figure 4 shows that before application of �F
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And after application of �F
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Dimensionless expression of L0/L
The length L0 of any element before application of �F  is 
given by
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Dimensionless expression of Ldef/L
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According to the assumption that 0 99 1 010. / .< <L Ldef  
(section “Assumptions”), one obtains
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Eliminating the term L Ldef
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Or

Figure 4. Node 1 was drawn at the same place in both 
configurations (before and after application of external load �F ) 
for the purpose of the demonstration.
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⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

2

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

And finally

L

L
f

L
H

L
D

d
L

def i= ⎛
⎝
⎜

⎞
⎠
⎟, , , ,� �  (10)

where f is another function, different from the one in equa-
tion (6).

Axial force N in any element after application 
of external load �F
Before application of the external load �F , each  
element is subjected to a pre-stress P Fti i

P= β ,  
which is thus a particular value of vector 
% % KP p F t t t t FP P P

n n
P

c s
= = ∗ ∗+β β( , , , , )1 2 3 . L0 and Ldef being, 

respectively, the length of the element i  before and after 
application of external load �F , and the axial force in the 
element subjected to both �P  and �F  is equal to

N EA
L L

L
P

def
i=

−( )
+

0

0

N can also be written as 
N EA L L L L L L Ftdef i

P= − +(( / / ) / / )0 0 β  or, according to 
equations (6) and (10), under the generic form

N EA f
L
H

L
D

d
L

Fti
i
P= ∗ ⎛

⎝
⎜

⎞
⎠
⎟+, , , ,� � β  (11)

Stiffness matrix of a deformed element in the 
global frame (X, Y, Z)
One considers here an element i  (strut or cable) after 
application of the pre-stress �P  and the external load �F  
and subjected to an axial force N. The three components 
of N at node 1 of the element i , according to the three 
directions (X, Y, Z) of the global axis system, are as 
follows

N N

N
X X d d

L

N N

X def X

X X

def

Y def Y

1

2 1 2 1

1

= −

= −
−( ) + −( )( )

= −

= −

co s

co s

,

,

α

α

NN
Y Y d d

L

N N

N
Z Z d d

Y Y

def

Z def Z

Z Z

2 1 2 1

1

2 1 2 1

−( ) + −( )( )

= −

= −
−( ) + −

co s ,α

(( )( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪ Ldef

 (12)

And for node 2

N N N
X X d d

L

N N N
Y

X def X
X X

def

Y def Y

2
2 1 2 1

2
2

= =
−( ) + −( )( )

= =
−

co s

co s

,

,

α

α
YY d d

L

N N N
Z Z d d

L

Y Y

def

Z def Z
Z Z

d

1 2 1

2
2 1 2 1

( ) + −( )( )

= =
−( ) + −( )( )

co s ,α
eef

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (13)

Assuming that │L0/Ldef│ ≈ 1 (section “Other assump-
tions”), equations (12) and (13) can be written according 
to the following matrix form that, if developed, is com-
posed of an elastic term and a geometric term
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N

N

N

N

N

N

N

c

c

c

c

c

c

X

Y

Z

X

Y
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Y

Z

X

Y

Z

1

1

1

2

2

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

=

−
−
−

⎛

⎝

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

+

−
−

−
−

−

N
L0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 00 1 0 0 1

1

1

1

2

2

2−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
d

d

d

d

d

d

X

Y

Z

X

Y

Z

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟

Expression of di/L, for a given S
Let us consider the first equation of (12). According to 
equations (10) and (4), it can be written according to the 
following generic form

N N f
L
H

L
D

d
LX

i
1 = ∗ ⎛

⎝
⎜

⎞
⎠
⎟, , , ,� �

And then according to equation (11)

N EA f
L
H

L
D

d
L

Ft f
L
H

L
D

d
L

X
i

i
P i

1 1

2

, , , , ,

, , , ,

= ∗ ⎛
⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝
⎜

⎞
⎠
⎟

� �

� �β
 (14)

For the simplicity of the demonstration, one considers 
first that all cables have the same cross-sectional area Ac 
and that all struts have the same cross-sectional area As. 
This assumption will be discussed and detailed in section 
“Generalization for struts with different cross-sectional 
areas.” Equation (14) can be written as follows:

For a cable

N

E A
F

f
L
H

L
D

d
L

t f
L
H

L
D

d
L

X

c c i

i
P i

1

1

2

,

, , , ,

, , , ,

=
∗ ⎛

⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝
⎜

⎞
⎠
⎟

� �

� �β

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

F  (15a)

For a strut

N

E A
F

f
L
H

L
D

d
L

t f
L
H

L
D

d
L

X

s s i

i
P i

1

1

2

,

, , , ,

, , , ,

=
∗ ⎛

⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝
⎜

⎞
⎠
⎟

� �

� �β

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

F  (15b)

Node 1 being potentially subjected to an external load 
F1,X in the X direction, its equilibrium in the X direction 
can be written as F NX X1 1=∑ , the summation being 

related to the extremity of all the elements having node 1 
in common, using relations of type (15a) or (15b).

Doing the same reasoning for the Y and Z directions and 
for each node of the structure leads to the assembly of 3*n 
equilibrium equations and the writing of the global 3n × 3n 
matrix system under the generic form below. Note that the 
values of coefficients ti

F  are supposed to be known, as far 
as the external load �F  is supposed to be known

t

t

t

F

nonlinear function of

L
H
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F
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F

n
F
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⎝
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⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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, ,
dd
L

E A
F

E A
F

p

nonlinear functioni of

L
H

L
D

d
L

E

i c c s s

i

, , ,

, , ,

β %

K

⎛
⎝
⎜

⎞
⎠
⎟

cc c s s

i c c

A
F

E A
F

p

nonlinear function nof

L
H

L
D

d
L

E A
F

, ,

, , ,

β %

K

⎛
⎝
⎜

⎞
⎠
⎟

3

,, ,
E A

F
p

F

s s β %
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 (16)

Inverting this system would lead to the following 
generic expression

d
L

d
L

d
L

nonlinear function of

X

i

nZ

1

1

K

K

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

LL
H

L
D

E A
F

E A
F

p

nonlinear functioni of

L
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c c s s

c

, , , ,

, ,
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K

⎛
⎝
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⎞
⎠
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cc s s
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F
E A

F
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, , ,

β %
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⎝
⎜

⎞
⎠
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⎛
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⎜
⎜
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Solving previous system leads to the following generic 
form of each of the 3n displacements di

d
L

f
L
H

L
D

F
E A

F
E A

pi

c c s s

=
⎛

⎝
⎜

⎞

⎠
⎟, , , ,β �  (17)

The below developments aim at eliminating terms F/(EcAc) 
and F/(EsAs) from equation (17).
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Equation (17), introduced into equation (11), allows 
expressing the axial force in each of the nc + nb element as 
follows

K

%

K

N E A f
L
H

L
D

F
E A

F
E A

p Ft

N E A
L
H

c i c c
c c s s

i
P

s j s s

,

,

, , , ,

. ,

=
⎛

⎝
⎜

⎞

⎠
⎟ +

=

β β

LL
D

F
E A

F
E A

p Ft
c c s s

j
P, , ,β β%

K

⎛

⎝
⎜

⎞

⎠
⎟ +

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (18)

Let us consider Nc,max as the highest value of the axial 
force in the cables. The design criterion is, according to 
equation (1a): N Ac max c c, =σ

With equation (18), one obtains

σ
β βc

c c c s s c c
i
P

E
f
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H
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D

F
E A

F
E A

p
F

E A
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⎛

⎝
⎜

⎞

⎠
⎟+, , , , �

And thus

σ
βc

c c c s sE
f

L
H

L
D

F
E A

F
E A

p=
⎛

⎝
⎜

⎞

⎠
⎟, , , , �  (19)

For the struts, the design criterion is given by equation 
(1b). If we assume that the form factor q I As s= / 2  is the 
same for all the struts, and introducing it into equation 
(1b), one obtains

N

A
L

q E A
s max

s
s

s

s s

, = +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

σ
σ
π

1 0
2

2

1

And, the indicator of buckling having been defined pre-
viously as Ψ =σ s sL qE F/ , one obtains

N
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L
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F
A
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s s

s s

, =
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⎞
⎠⎟
⎛

⎝
⎜
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⎠
⎟

σ

π σ
1

12
2

0
2

Ψ
 (20)

Combining equations (18) and (20), one obtains

f
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F
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F
E A

p
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E A
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2 F E A

E
s s

s sσ

And thanks to equation (6), the previous equation can 
be written under the following generic form

σ
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s c c s sE
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⎝
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⎟Ψ, , , , , �  (21)

Finally, both equations (19) and (21) lead to
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 (22)

And, finally, combining equations (22) and (17) leads to

d
L

f
L
H

L
D

E E
pi c

c

s

s

=
⎛

⎝
⎜

⎞

⎠
⎟, , , , ,Ψ

σ σ
β �  (23)

In this equation, how to find the value of β still needs to be 
discussed.

Discussion about the value of β
Concerning β, its minimum value βmin related to a situation 
where no cable slacks, that means where the least ten-
sioned cable is related to N = 0, can be found easily, thanks 
to equation (18). Indeed, considering in particular the 
smallest value Nc,min of Nc,i, equation (18) leads to

N E A f
L
H

L
D

F
E A

F
E A

p

Ft

c min c c
c c s s

i
P

, min
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0

which leads to

βmin
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F
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F
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p=
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⎟, , , , �

And thanks to equation (22)

β
σ σmin

c
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s

s
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E E
p=

⎛

⎝
⎜
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⎠
⎟, , , , ,Ψ �  (24)

Thanks to equation (24), and if β = βmin, equation (23) 
becomes

d
L

f
L
H

L
D

E E
pi c

c

s

s

=
⎛

⎝
⎜

⎞

⎠
⎟, , , , ,Ψ

σ σ
�  (25)

This ends the demonstration of equation (2a).

Generalization for struts with different cross-
sectional areas
Equation (23) has been demonstrated assuming that all 
struts have the same cross-sectional area As, considering 
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that the most stressed strut gives its cross section to all the 
others (and the same for the cables). Assuming that factor 
q is the same for all struts (in order to consider a unique 
indicator of buckling Ψ), relation equation (23) is although 
still valid when the struts and the cables have each a differ-
ent cross section designed, respectively, according to 
equations (1b) and (1a). Indeed, functions f of equations 
(17) and (18) then contain nc terms F/(EcAc,i) and ns terms 
F/(EsAs,i).

Equation (21) can be written ns times for the struts, 
equation (19) can be written nc times for the cables, and 
one obtains (ns + nc) equations allowing to find the nc terms 
F/(EcAc,i) and the ns terms F/(EsAs,i).

Note that the fully stressed design does not always find 
physically possible solutions and can lead to convergence 
problems of the numerical algorithm.

Demonstration of relation 
σσ ΨΨ σσ σσsV FL fL H L D E E p uc c s s/ ( / , / , , / , / , , )== �  
for a given S
Thanks to the assumptions of section “Other assumptions,” 
0.99≤ L Lini0 / ≤1.01 the total volume of the structure is 
equal to
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i c i
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i s i
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∑ +
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1 1
, , , ,

The previous relation can also be written as
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And, according to equations (6) and (22), one obtains
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And, finally, assuming that factor u is defined as 
u c s=σ σ/ , one obtains
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And, if β = βmin, one finally obtains

σ
σ σ

s c

c

s

s

V
FL

f
L
H

L
D

E E
p u=
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This ends the demonstration of equation (2b).

Choice of a pre-stress scenario �P
Equations (25) and (26) show that the displacements and 
the volume of a structure depend on the pre-stress state �p
, although the search for the best pre-stress state �p  is not 
the aim of this article. Furthermore, considering that �p  is 
a self-stress state is not necessary a good choice for several 
reasons: the optimization algorithm would become 
extremely complex, �p  depends itself of many parameters 
(among which, L/H), and mainly, a self-stress state is not 
necessary the one that leads to a good structural behavior 
with respect to the particular external load �F . It seems 
thus relevant to search for a way of finding �p  that guaran-
ties that it is only a function of the same parameters 
( / , / , , / , / )L H L D E Ec c s sΨ σ σ .

For instance, a way to numerically simulate a pre-stress 
into a structure is to apply an external axial force Fpre at both 
extremities of an element, as shown in Figure 5. Introducing 
Fpre into this element will lead, after calculation, to a situa-
tion where each element of the structure, including the one in 
which Fpre was initially introduced as external load, is finally 
subjected to a force Qi different from Fpre.

The previous reasoning can be extended: a way to 
numerically create a pre-stress scenario �P  is to numeri-
cally apply to each element of the structure an external 
axial force Fpre,i at its extremities.

The (nc + ns) values of the initial axial force Fpre,i can be 
defined by vector �Fpre

% % K KF f F t t t t Fpre pre pre
pre pre

i
pre

n n
pre

pre
c s

= ( ) = ( )(+β β1 2, , , , , ))
− ≤ = ( ) ≤

≥

⎧
+

,

, , , , ,
with

1 1

0

1 2
% K Kf t t t tpre

pre pre
i
pre

n n
pre

pre

c s

β
⎨⎨
⎪

⎩⎪

Figure 5. Considering a pre-stress as an external load.
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βpre,min, just like βmin, is defined as being the particular 
value of βpre that leads to a situation where the axial force 
in the least tensioned cable after application of the external 
load �F  is equal to zero, which means that no cable slacks. 
As shown in section “Discussion about the value of β” by 
relation (24), they both only depend on parameters (L/H, 
L/D, Ψ, Ec/σc, Es/σs, �p ).

The proposed design methodology considers that the 
choice of �f pre  is arbitrary, chosen once for all. But the 
designer must be aware that, on one hand, the chosen 
vector �f pre  does not necessarily lead to a solution where 
no cable slacks, and, on the other hand, there may exist 
a better choice, which leads to a stiffer or lighter struc-
ture. For the examples discussed in sections “Numerical 
confirmation of equations (28) and (29),” “Example of 
curves of efficiency,” and “Other examples: trusses and 
other tensegrity topologies,” one considers that the val-
ues of �f pre  are null for the cables and identical for the 
struts % K Kf pre = ( , , , , , )0 0 1 1 . This hypothesis corre-
sponds to a practical situation where only struts are 
equipped with a mechanical device (that can elongate 
them).

Figure 6 shows a way to find �Fpre  and its associate pre-
stress scenario �P , which is compatible with the external 
load case �F .

The final step of the demonstration is to prove that if 
�f pre  is chosen and fixed once for all, the pre-stress state �p  

only depends on parameters (L/H, L/D, Ψ, Ec/σc, Es/σs), 
which is useful to get rid of �p  in relations (2a), (2b), and 
(24)–(26) and finally demonstrate the validity of equations 
(3a) and (3b).

For this purpose, let us apply the developments  
of section “Demonstration of relation 
δ σ σ/ ( / , / , , / , / , )L f L H L D E E pc c s s= Ψ �  for a given 

S,” this time not considering the phase where �F  is applied 
after an existing �P , but the phase where �Fpre  is applied 
alone and creates �P . In this case, relation (18) can be 
rewritten as follows, where step 4 of Figure 5 is responsi-
ble for adding the last term t Fi

pre
preβ

P t F E A f

L
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F

E A

F

E A
t

i i
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cor s cor s
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c c

pre

s s
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This equation represents thus the (nc + ns) axial forces of 
vector �P  into the structure after the application of �Fpre . 
Thanks to equations (22) and (24), previous equation gives
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Thanks to equation (27), relations (25) and (26) can 
thus get rid of vector �p  and be rewritten as follows
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This ends the demonstration of equations (3a) and (3b).

Optimization algorithm
Figure 7 summarizes the algorithm that the authors used to 
bring a numerical confirmation of the validity of equations 
(28) and (29), illustrated by examples of section “Numerical 
confirmation of equations (28) and (29).” Once the mate-
rial is chosen (Ec, σc, Es, σs) and �f pre  chosen, the algorithm 
allows finding, for a given S, the value of L/H that corre-
sponds to the minimum deflection δ/L at mid-span (but any 
other deflection could be considered) for a given value of 
the indicator of buckling Ψ. The best (the minimum) value 
of δ/L is numerically easy to find as it is just the result of a 
search for the minimum value among the solutions given 
for each L/H.

Figure 6. Finding the pre-stress scenario �P .
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Algorithm of Figure 7 can be used for several values of 
S, for instance, 2, 3, 4, 5, 6, and so on. For a given value 
of S, the algorithm has to be repeated for values of Ψ 
between 0 and 100. Indeed, previous studies17–19 have 
shown that values of Ψ bigger than 100 are related to very 
heavy and low-efficient structures. Note that the algo-
rithm is similar if the objective is to minimize the volume 
(via relation (29)).

Numerical confirmation of equations 
(28) and (29)
In this section, we intend to numerically confirm the 
validity of relations (28) and (29) using the algorithm of 
Figure 7. For this purpose, we have chosen to generate 
the pre-stress scenario, thanks to identical axial forces 
introduced as an external force at each extremity of the 
struts

% K K KF

F

pre

proportionnal to

≈ ( )
∗

0 0 1 1, , , , , ,

, 0:for cables,1:for strruts( )

Figure 8 shows a tensegrity beam of span 10 m sub-
jected to an external load of 30 kN, composed of four 
simplex modulus, with an hyperstaticity equal to 1. 
Figure 9 shows another tensegrity beam composed of 

four simplex modulus with a hyperstaticity equal to 1, 
but this time of span 30 m and subjected to an external 
load of 125 kN. Supports are shown with black arrows on 
the lower extremity nodes. It is important to precise that 
both structures have (arbitrary choice) an indicator of 
buckling equal to Ψ = 50 and a value E/σ = 894 for both 
cables and struts.

Graphs of Figure 10 are related to the structure of 
Figure 8 for a particular value of H = 2 m (L/H = 5). The left 
graph shows the various axial forces Pi calculated in the 
cables and the struts under initial axial forces Fpre = 140 kN 
numerically introduced into the struts and with no  
external load. In other words, one has 
% K KF Fpre pre= ∗ = ∗( , , , , , ) ( / )0 0 1 1 140 30β . The value of 

140 kN was reached for β βpre pre min= ,  and β β= min  (situ-
ation where the least tensioned cable is related to N = 0).

The right graph shows internal forces due to 
(
Fpre  com-

bined with the external load F = 30 kN. The algorithm of 
Figure 7 fitted the value of 

(
Fpre  and β pre  in such way that 

no cable slacks. It is cable 21 that reaches the minimum 
value of N when �F  is applied, followed by cables 33 and 36.

Figure 11, resulting from a numerical calculation 
according to the organigram of Figure 7 and, this time, for 
a large range of values L/H, shows that both structure 1 and 
structure 2 having the same S, the same pre-stressing ini-
tial scenario % K Kf pre = ( , , , , , )0 0 1 1 , the same values of 
Ψ = 50 and E/σ = 894 show exactly the same curves 

Figure 7. General algorithm to find the value of (L/H, (δ/L)min) for a given value of Ψ (here, As is the same cross-sectional area for 
all struts and Ac is the same cross-sectional area for all cables).
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L/δ–L/H (left curve) and the same curves W–L/H (right 
curve). This brings the numerical confirmation of equa-
tions (27)–(29).

These kinds of curves can also lead to interesting con-
siderations, such as in this particular case:

•• The best stiffness is related to L/H = 12 and varies 
little for L/H > 8;

•• For this particular choice of �f pre , it is impossible to 
obtain a value of L/δ better than 267, unless the pre-
stress is increased beyond the strict necessary value 
β = βmin (θ > 1), or the value of Es s/σ  or Ec c/σ  is 
increased, or the value of Ψ is increased as shown in 
Figure 12, that means reducing the value of factor q 

of the cross section or eventually increasing the 
number S of Simplex modulus (see section 
“Example of curves of efficiency”).

•• The minimum volume V is related to L/H = 7 and is 
equal to:
�	 For the 10-m span structure: V = (FL/σ)*W = 3

0,000*10,000/235*48.3 = 61.6 × 106 mm3, that 
means a self-weight equal to 4,8 kN;

�	 For the 30-m span structure: V = (FL/σ)*W = 12
5,000*30,000/235*48.3 = 770.7 × 106 mm3, that 
means a self-weight equal to 60.5 kN.

Example of curves of efficiency
The structures of Figures 8 and 9 have been computed for 
values of the indicator of buckling Ψ between 0 and 70 in 
order to find, in each case, the minimum value of δ/L (or 
maximum L/δ). The result is given in Figure 12, which 
shows the curve of efficiency of L/δ when the structure is 
composed of S = 4, 6, and 8 elementary tensegrity modu-
lus. The efficiency curves of W could also be drawn the 
same way, which could also bring useful information to the 
designer.

In this particular example, the curve of efficiency of 
Figure 12 shows that

•• Whatever the value of Ψ, the best values of L/H 
are, respectively, for S = 4, S = 6, and S = 8, related 
to values between 11 and 12, 12 and 13, and 13 
and 14. In other words, the higher the S, the larger 
the L/H.

•• The higher the Ψ (that means reducing the value of 
factor q), the more the stiffness increases (better 
ratio L/δ).

•• Increasing the number S leads to a better stiffness.
•• Coming back to the structures of Figures 8 and 9 

related to S = 4, Ψ = 50, and E/σ = 894, the best stiff-
ness corresponds to L/δ = 267 and L/H = 12, as also 
shown in Figure 11 (left).

Figure 8. Structure 1.

Figure 9. Structure 2.

Figure 10. Values of the axial forces for structure 1 (Figure 8, S = 4, Ψ = 50, E/σ = 894, L/H = 5).
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Other examples: trusses and other 
tensegrity topologies
In this section are shown the results given by the design 
methodology for two other topologies of structures. The 
first structure is a “usual” truss (linear behavior, no pre-
stress) composed of four pyramidal modulus (Figure 13). 
The second one is tensegrity based, but this time composed 
of quadruplex modulus (Figure 14). To allow the 

comparison with the topology previously studied (Figure 8 
or 9), the same kind of external load case is considered 
(centered F). Moreover, the three structures (Figures 8 or 9, 
13, and 14) are related to the same values of S, Ψ, 
E E us s c c/ , / ,σ σ , and �f pre , if pre-stressed.

Figure 15 is given for arbitrary values of E / ( )σ = 894  
and the indicator of buckling ( )= 50  and illustrates the 
power of the design methodology. Indeed, it shows that for 
these three families and with the particular type of load 
case and the values of S, Ψ, E E us s c c/ , / ,σ σ , �f pre :

Figure 11. The values of L/δ and W are identical for both structures related to the same S, Ψ, E E us s c c/ , / ,σ σ , and �fpre .

Figure 12. Curves of efficiency of L/δ (E/σ = 894 for all cables 
and struts).

Figure 13. Truss (linear behavior, no pre-stress).

Figure 14. Tensegrity based composed of quadruplex 
modulus.
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•• The “Simplex topology” is always stiffer and lighter 
than the “Quadruplex topology.”

•• The best truss is more than 2 times stiffer and 2 
times lighter than the best tensegrity topology.

Conclusion and discussion
The study has extended the validity of the theory of mor-
phological indicators to 3D hyperstatic pre-stressed and 
nonlinear structures. It has been proved that any displace-
ment di, in particular the deflection δ at mid-span, and the 
volume V of materials of any structure designed according 
to equations (1a) and (1b) are such that[AQ: 3]

δ
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For a given S, these relations become, as soon as the 
materials and the initial pre-stressing scenario �f pre  are 
chosen
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Equations (30) and (31) can greatly simplify the numer-
ical algorithms used for the search for the stiffest or the 
lightest structures. They can be used for any family of 
structures in order to draw the efficiency curves and to find 
the best solutions or simply to compare the efficiency of 

structures belonging to different families. As explained in 
sections “Pre-stress” and “Choice of a pre-stress scenario 
�P ,” this design methodology requires the designer to first 

arbitrarily choose one initial pre-stress scenario �f pre  
which may not be the best one. Nevertheless, it allows 
comparing different solutions coming from different 
choices of �f pre . The comparison of the solutions given in 
terms of displacements and volume for several choices of 
�f pre , leading or not to a self-stress state, would be an inter-

esting following of this research.
It has also been proved that hyperstaticity does not 

change the generic expressions (30) and (31), while the 
nonlinear behavior is responsible for the presence of terms 
Ec/σc and Es/σs. If the structure has a linear behavior and in 
case of a single material for cables and struts, the relations 
get simplified and become the expressions of the indicator 
of displacement and the indicator of volume developed in 
Latteur18 for trusses, cables, and arches
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In case of 2D linear structures not subjected to buck-
ling, the upper relations get again simplified and lead to 
the expressions similar to the ones used by Zalewski and 
Kus,13 Quintas Ripoll,14,15 and Samyn16,17
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The examples of section “Numerical confirmation of 
equations (28) and (29)” have shown that for large 
spans, the self-weight can become important compared 
to the external loads. Self-weight then acts as a new 
load case of total value ρV, which should be combined 
with the external load case. In this case, the 

Figure 15. Comparison of L/δ and W for the three topologies (truss, simplex, and quadruplex) related to the same S, Ψ, 
E E us s c c/ , / ,σ σ , �fpre .
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optimization process has to take into account a new 
parameter equal to ρL/σs, called indicator of self-
weight,18 and the algorithm of Figure 7 has to be adapted 
with a new iterative process.

This theory seems promising as it opens the door for 
fast and rigorous designs based on stiffness and volume 
optimization, not only of tensegrity structures but also of 
any kinds of 3D lattices and structures composed of pre-
stressed elements. It also allows a fast stiffness and volume 
comparison of tensegrity structures with other kinds of 
classical structures. Further research could, however, 
include the consideration of random load cases and 
dynamic loads and thus extend considerably the relevance 
of the design methodology. Using this theory, the authors 
now intend investigating different tensegrity topologies 
that would allow building footbridges with a sufficient 
stiffness and a minimum volume. Figure 16 shows a foot-
bridge that could be further studied and optimized using 
this design tool.

Acknowledgements
The authors wish to thank René Motro for the exchanges and the 
useful advices he gave when they decided to investigate the use 
of morphological indicators for tensegrity structures.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding
The author(s) received no financial support for the research, 
authorship, and/or publication of this article.

References
 1. Skelton RE and De Oliveira M. Tensegrity systems. Berlin: 

Springer Science+Business Media, 2009.
 2. Tibert AG and Pellegrino S. Review of form-finding meth-

ods for tensegrity structures. Int J Solids Struct 2003; 38: 
5223–5252.

 3. Tran HC and Lee J. Advanced form-finding of tensegrity 
structures. Comput Struct 2010; 88: 237–246.

 4. Zhang JY and Ohsaki M. Adaptative force density method 
for form-finding problem of tensegrity structures. Int J 
Solids Struct 2006; 43: 5658–5673.

 5. Gomez Estrada G, Bungartz H-J and Mohrdieck C. 
Numerical form-finding of tensegrity structures. Int J Solids 
Struct 2006; 43: 6855–6868.

 6. De Jager B and Skelton E. Symbolic stiffness optimization 
of planar tensegrity structures. J Intel Mat Syst Str 2004; 15: 
181–193.

 7. Masic M, Skelton RE and Gill PE. Optimization of tenseg-
rity structures. Int J Solids Struct 2006; 43: 4687–4703.

 8. Rhode-Barbarigos L, Bel Hadj Ali N, Motro R, et al. 
Designing tensegrity modules for pedestrian bridges. Eng 
Struct 2010; 32: 1158–1167.

 9. Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi A, et al. 
Design optimization and dynamic analysis of a tensegrity-
based footbridge. Eng Struct 2010; 32: 3650–3659.

 10. Zalewski W. The flow of forces. In: Excerpt from notes on 
structural behavior for architecture students. MIT Press, 
1980.[AQ: 4]

 11. Michell AGM. The limit of economy of material in frame 
structures. Philos Mag 1904; 8(47): 589–597.

 12. Skelton RE and De Oliveira MC. Optimal tensegrity struc-
tures in bending: the discrete Michell Truss. J Frankl Inst 
2010; 347: 257–283.

 13. Zalewski W and Kus S. Shaping structures for least weight. 
In: Actes du congrès international de l’IASS à Stuttgart, 
1996, pp. 376–383.[AQ: 5]

 14. Quintas Ripoll V. Sobre el teorema de Maxwell y la opti-
mization de arcos de cubierta. Inf Constr 1989; 40(400): 
57–70.

 15. Quintas Ripoll V. Sobre las formas de minimo volumen de 
las celosias de seccion constante. Inf Constr 1992; 43(418): 
61–67.

 16. Samyn P. Etude comparée du volume et du déplacement de 
structures isostatiques bidimensionnelles sous charges ver-
ticales entre deux appuis. Thèse de doctorat, Université de 
Liège, Liège, 2000.

 17. Samyn P. Etude de la morphologie des structures à l’aide 
des indicateurs de volume et de déplacement. Publication de 
la Classe des Sciences de l’Académie Royale de Belgique, 
collection in-4°, 3e série, tome V, 2004.

 18. Latteur P. Optimisation et prédimensionnement des treil-
lis, arcs, poutres et câbles sur base d’indicateurs mor-
phologiques. Application aux structures soumises en 
partie ou en totalité au flambement. Thèse de doctorat, Vrije 
Universiteit Brussel, Brussel, 2000.

 19. Van Steirteghem J. A contribution to the optimisation of 
structures using morphological indicators: (in)stability and 
dynamics. Thèse de doctorat, Vrije Universiteit Brussel, 
Brussel, 2006.

 20. Vandenbegh T. Benchmarking optimization at conceptual 
design stage with morphological indicators. PhD Thesis, 
Vrije Universiteit Brussel, 2010.

 21. Vandenbergh T and De Wilde P. A review on conceptual 
design with morphological indicators. Int J Struct Eng 2010; 
1(3/4): 280–298.

 22. Zhang P and Feng J. Initial prestress design and optimiza-
tion of tensegrity systems based on symmetry and stiffness. 
Int J Solids Struct 2017; 106–107: 68–90.

Figure 16. An example of tensegrity footbridge.



Latteur et al. 17

 23. Ashwear N, Tamadapu G and Eriksson A. Optimization 
of modular tensegrity structures for high stiffness and fre-
quency separation requirements. Int J Solids Struct 2016; 
80: 297–309.

Appendix 1

Notation

a, b, c dimensionless numbers, respectively, equal to 
(X2 − X1)/L, (Y2 − Y1)/D, and (Z2 − Z1)/H

A cross-sectional area

Ac cross-sectional area of a cable

Ac,i cross-sectional area of a cable of index i

Ac
j  cross-sectional area of the cables (all the same) at 

step j of the iteration process

Ac
j+1  cross-sectional area of the cables (all the same) 

at step j + 1 of the iteration process

As cross-sectional area of a strut

As,i cross-sectional area of a strut of index i

As
j  cross-sectional area of the struts (all the same) at 

step j of the iteration process

As
j+1  cross-sectional area of the struts (all the same) 

at step j + 1 of the iteration process

cdef,X, cdef,Y, cdef,Z equal to, respectively, cos αdef,X, cos 
αdef,Y, cos αdef,Z

cX, cY, cZ equal to, respectively, cos αX, cos αY, cos αZ

di can be diX or diY or diZ

(diX, diY, diZ) the displacements at node i, expressed in 
the (X, Y, Z) system of axis

D width of the structure before application of external 
load �F

E Young’s modulus

Ec Young’s modulus of the cables’ material

Es Young’s modulus of the struts’ material

f, f1, f2 undefined functions
�f  vector ( , , , , )t t t tF F F

n
F

1 2 3 3� , with −1 1≤ ≤ti
F  and 

ti
F∑ =1

�f pre  vector ( , , , , )t t t tpre pre pre
n n
pre
c s

1 2 3 � + , with 

−1 1≤ ≤ti
pre

F  see definition of �F

�F  = = ∗( , , , , ) ( , , , , ), , , ,F F F F t t t t FX Y Z Z n
F F F

n
F

1 1 1 3 1 2 3 3� � , 

with −1 1≤ ≤ti
F  and ti

F∑ =1 , is the external load 
acting on each node

Fpre, Fpre,I value of the “equivalent” pre-stress into a 
cable or a strut of index i, considered as an external axial 
load acting at both extremities of a cable (>0 because in 
traction) or a strut (<0 because in compression)
�Fpre

 

= ( )
=

+F F F F

t t t

pre pre pre pre n n

pre pre pre

c s, , , ,, , ,...

, , ,..

1 2 3

1 2 3 ..t Fn n
pre

pre
c s+( )∗ ∗β , with 

–1≤ ti
pre ≤1, defining the value of Fpre in each of the 

(nc+ns) elements

H height of the structure before application of exter-
nal load �F

i, j, k integers used for iterations (=0, 1, 2, …), or 
index of a node, of a strut or a cable

Is, Is,i cross-sectional moment of inertia of a strut of 
index i

L span of the structure

Ldef length of an element (strut or cable) when the 
structure is subjected both to the pre-stress �P  and the 
external load case �F

Lini, Lini,i theoretical length of an element (strut or 
cable) of index i when the structure is not loaded and 
not pre-stressed (=initial distance between both nodes 
of an element)

L0, L0,i length of an element (strut or cable) of index i 
when the structure is subjected only to the pre-stress 
�P

m integer number such as β = k/m

n number of nodes

nc number of cables

ns number of struts

N, Ni axial force in an element of index i (strut or 
cable), considered positive if in traction, after applica-
tion of the external load �F

Nc,i axial force in a cable of index i, considered posi-
tive if in traction (always positive), after application of 
the external load �F

Nc,max maximum value of axial force Nc,i

Nc,min minimum value of axial force Nc,i

Ns,j axial force in a strut of index j, considered posi-
tive if in traction (always negative), after application of 
the external load �F

Ns,max maximum value of the absolute value of axial 
force Ns,j

(Nk,X, Nk,Y, Nk,Z) the components of internal force N at 
the extremity “node k” of an element (strut or cable), 
expressed in the (X, Y, Z) system of axis
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P, PI value of the pre-stress into a cable (>0 because in 
traction) or a strut (<0 because in compression) of index 
i , before application of the external load

�p  vector ( , , , , )t t t tP P P
n n
P

c s1 2 3 � + , with −1 1≤ ≤ti
P . It is 

the pre-stress state
�P
 
= = ∗ ∗+ +( , , , , ) ( , , , , )P P P P t t t t Fn n

P P P
n n
P

c s c s1 2 3 1 2 3� � β , 

with −1 1≤ ≤ti
P , defining the value of P in each of the 

(nc + ns) elements. It is the pre-stress scenario

q defined only for struts as q I As s= / 2

Qi axial force into an element of index i

S number of elementary tensegrity modulus that com-
pose the structure

ti
F  one value of vector �f

ti
P  one value of the vector �p

ti
pre  one value of the vector �f pre

u σc/σs

V volume of materials (cables + struts)

W indicator of volume, equal to σ sV FL/

(X, Y, Z) coordinates of the global system of axis

(Xi, Yi, Zi) coordinates of node i in the global system 
of axis, before application of external load �F

αX, αY, αZ see Figure 4

αdef,X, αdef,Y, αdef,Z see Figure 4

β, βpre factor > 0 defining the pre-stress level

βmin, βpre,min value of β or βpre under which the least 
tensioned cable slacks

δ particular value of di, for example, the deflection at 
mid-span

θ real number ≥1

λi slenderness of a strut of index i, equal  
to µ L A Is i s i0 , ,/

Λi equal to λ π σi s sE/ ( / )

ρ volumic weight of a material

σ can be σc or σs

σc maximum allowable stress in cables

σs maximum allowable stress in struts

Ψ buckling indicator of the structure, equal to 

Ψ =σ sL qEF/


