DARCIS, Gilles ; Centre Hospitalier Universitaire de Liège - CHU > Service des maladies infectieuses - médecine interne
Van Driessche, B.; Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, Gosselies, Belgium
Van Lint, C.; Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, Gosselies, Belgium
1 Davey, R.T. Jr, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 15109–15114.
2 Whitney, J.B., et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512 (2014), 74–77.
3 Chun, T.W., et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387 (1997), 183–188.
4 Buzon, M.J., et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 20 (2014), 139–142.
5 Banga, R., et al. PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med. 22 (2016), 754–761.
6 Paiardini, M., Lichterfeld, M., Follicular T helper cells: hotspots for HIV-1 persistence. Nat. Med. 22 (2016), 711–712.
7 Buzon, M.J., et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat. Med. 16 (2010), 460–465.
8 Fletcher, C.V., et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 2307–2312.
9 Hatano, H., et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J. Infect. Dis. 208 (2013), 1436–1442.
10 Lorenzo-Redondo, R., et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530 (2016), 51–56.
11 Elrefaei, M., et al. Central memory CD4+ T cell responses in chronic HIV infection are not restored by antiretroviral therapy. J. Immunol. 173 (2004), 2184–2189.
12 Migueles, S.A., et al. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J. Virol. 83 (2009), 11876–11889.
13 Van Lint, C., et al. HIV-1 transcription and latency: an update. Retrovirology, 10, 2013, 67.
14 Saayman, S., et al. HIV latency and the noncoding RNA therapeutic landscape. Adv. Exp. Med. Biol. 848 (2015), 169–189.
15 Cary, D.C., et al. Molecular mechanisms of HIV latency. J. Clin. Invest. 126 (2016), 448–454.
16 Marini, B., et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521 (2015), 227–231.
17 Shan, L., et al. Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J. Virol. 85 (2011), 5384–5393.
18 Wagner, T.A., et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345 (2014), 570–573.
19 Cherrier, T., et al. CTIP2 is a negative regulator of P-TEFb. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 12655–12660.
20 Eilebrecht, S., et al. HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucleic Acids Res. 42 (2014), 4962–4971.
21 Barboric, M., et al. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell 8 (2001), 327–337.
22 Perkins, N.D., et al. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275 (1997), 523–527.
23 Duverger, A., et al. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J. Virol. 87 (2013), 2264–2277.
24 Colin, L., et al. Chromatin disruption in the promoter of bovine leukemia virus during transcriptional activation. Nucleic Acids Res. 39 (2011), 9559–9573.
25 Hutter, G., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360 (2009), 692–698.
26 Henrich, T.J., et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161 (2014), 319–327.
27 Luzuriaga, K., et al. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 372 (2015), 786–788.
28 Saez-Cirion, A., et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog., 9, 2013, e1003211.
29 Frange, P., et al. HIV-1 virological remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report. Lancet HIV 3 (2016), e49–e54.
30 Williams, J.P., et al. HIV-1 DNA predicts disease progression and post-treatment virological control. Elife, 3, 2014, e03821.
31 Azzoni, L., et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J. Infect. Dis. 207 (2013), 213–222.
32 Bartholomeeusen, K., et al. Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J. Biol. Chem. 288 (2013), 14400–14407.
33 Sung, T.L., Rice, A.P., Effects of prostratin on cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells. Retrovirology, 3, 2006, 66.
34 Pandelo Jose, D., et al. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462–463 (2014), 328–339.
35 Fujinaga, K., et al. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res. 40 (2012), 9160–9170.
36 Mehla, R., et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One, 5, 2010, e11160.
37 Darcis, G., et al. An in-depth comparison of katency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog., 11, 2015, e1005063.
38 Bullen, C.K., et al. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20 (2014), 425–429.
39 Diaz, L., et al. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC- and NF-κB-dependent mechanism. Sci. Rep., 5, 2015, 12442.
40 Abreu, C.M., et al. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One, 9, 2014, e97257.
41 Jiang, G., et al. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-κB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog., 11, 2015, e1005066.
42 Gama, L., et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31 (2014), 5–14.
43 Spina, C.A., et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog., 9, 2013, e1003834.
44 Bouchat, S., et al. Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4+ T cells from HIV-1-infected HAART-treated patients. AIDS 26 (2012), 1473–1482.
45 Imai, K., et al. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J. Biol. Chem. 285 (2010), 16538–16545.
46 Bernhard, W., et al. The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett. 585 (2011), 3549–3554.
47 Bouchat, S., et al. Sequential treatment with 5-aza-2′-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol. Med. 8 (2016), 117–138.
48 Fujinaga, K., et al. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells. J. Biol. Chem. 290 (2015), 1829–1836.
49 Bartholomeeusen, K., et al. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J. Biol. Chem. 287 (2012), 36609–36616.
50 Li, Z., et al. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 41 (2013), 277–287.
51 Brass, A.L., et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319 (2008), 921–926.
52 Banerjee, C., et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J. Leukocyte Biol. 92 (2012), 1147–1154.
53 Boehm, D., et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12 (2013), 452–462.
54 Zhu, J., et al. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep. 2 (2012), 807–816.
55 Doyon, G., et al. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27 (2013), F7–F11.
56 Elliott, J.H., et al. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV 2 (2015), e520–e529.
57 Archin, N.M., et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487 (2012), 482–485.
58 Elliott, J.H., et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog., 10, 2014, e1004473.
59 Rasmussen, T.A., et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1 (2014), e13–e21.
60 Sogaard, O.S., et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog., 11, 2015, e1005142.
61 Reuse, S., et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One, 4, 2009, e6093.
62 Laird, G.M., et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J. Clin. Invest. 125 (2015), 1901–1912.
63 Martinez-Bonet, M., et al. Synergistic activation of latent HIV-1 expression by novel histone deacetylase inhibitors and bryostatin-1. Sci. Rep., 5, 2015, 16445.
64 Darcis, G., et al. Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir. AIDS 31 (2017), 181–189.
65 Chomont, N., et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15 (2009), 893–900.
66 Wong, J.K., Yukl, S.A., Tissue reservoirs of HIV. Curr. Opin. HIV AIDS 11 (2016), 362–370.
67 Akimova, T., et al. Histone/protein deacetylases and T-cell immune responses. Blood 119 (2012), 2443–2451.
68 Ho, Y.C., et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155 (2013), 540–551.
69 Shan, L., et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36 (2012), 491–501.
70 Barouch, D.H., Deeks, S.G., Immunologic strategies for HIV-1 remission and eradication. Science 345 (2014), 169–174.
71 Gray, G.E., et al. Approaches to preventative and therapeutic HIV vaccines. Curr. Opin. Virol. 17 (2016), 104–109.
72 Margolis, D.M., et al. Latency reversal and viral clearance to cure HIV-1. Science, 353, 2016, aaf6517.
73 Stephenson, K.E., Barouch, D.H., Broadly neutralizing antibodies for HIV eradication. Curr. HIV/AIDS Rep. 13 (2016), 31–37.
74 Sloan, D.D., et al. Targeting HIV reservoir in infected CD4 T cells by dual-affinity re-targeting molecules (DARTs) that bind HIV envelope and recruit cytotoxic T cells. PLoS Pathog., 11, 2015, e1005233.
75 Gill, A.L., et al. PD1/PD-L1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-PD-L1 (Avelumab). AIDS 30 (2016), 2487–2493.
76 Olesen, R., et al. Immune checkpoints and the HIV-1 reservoir: proceed with caution. J. Virus Erad. 2 (2016), 183–186.
77 Leth, S., et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV 3 (2016), e463–e472.
78 Borducchi, E.N., et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-unfected rhesus monkeys. Nature 540 (2016), 284–287.
79 Gutierrez, C., et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 30 (2016), 1385–1392.
80 Jones, R.B., et al. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog., 10, 2014, e1004287.
81 Jones, R.B., et al. A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog., 12, 2016, e1005545.
82 Massari, S., et al. Blocking HIV-1 replication by targeting the Tat-hijacked transcriptional machinery. Curr. Pharm. Des. 19 (2013), 1860–1879.
83 Klatt, N.R., et al. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol. Rev. 254 (2013), 326–342.
84 Mousseau, G., et al. An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host. Microbe 12 (2012), 97–108.
85 Mousseau, G., et al. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio, 6, 2015, e00465.
87 Vozzolo, L., et al. Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. J. Biol. Chem. 285 (2010), 39314–39328.
88 Anderson, I., et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E1528–E1537.
89 O'Keeffe, B., et al. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J. Biol. Chem. 275 (2000), 279–287.
90 Kim, H., et al. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Sci. Rep., 6, 2016, 28896.
91 Wan, Z., Chen, X., Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology, 11, 2014, 88.
92 Vranckx, L.S., et al. LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine 8 (2016), 248–264.
93 Yang, G., et al. Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene 26 (2007), 91–101.
94 Colin, L., Van Lint, C., Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology, 6, 2009, 111.
95 Friedman, J., et al. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J. Virol. 85 (2011), 9078–9089.
96 Vire, E., et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 439 (2006), 871–874.
97 Suzuki, M.M., Bird, A., DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9 (2008), 465–476.
98 Blazkova, J., et al. CpG methylation controls reactivation of HIV from latency. PLoS Pathog., 5, 2009, e1000554.
99 Kauder, S.E., et al. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog., 5, 2009, e1000495.
100 Trejbalova, K., et al. Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin. Epigenetics, 8, 2016, 19.