Article (Scientific journals)
Counting Subwords Occurrences in Base-b Expansions
Leroy, Julien; Rigo, Michel; Stipulanti, Manon
2018In Integers, 18A, p. 13, 32
Peer Reviewed verified by ORBi
 

Files


Full Text
Baseb.pdf
Author postprint (454.45 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Binomial coefficients; Pascal triangle; Subwords; b-regularity; Asymptotics; Summatory function
Abstract :
[en] We consider the sequence (Sb(n))n≥0 counting the number of distinct (scattered) subwords occurring in the base-b expansion of the non-negative integers. By using a convenient tree structure, we provide recurrence relations for (Sb(n))n≥0 leading to the b-regularity of the latter sequence. Then we deduce the asymptotics of the summatory function of the sequence (Sb(n))n≥0.
Disciplines :
Mathematics
Author, co-author :
Leroy, Julien ;  Université de Liège - ULiège > Département de mathématique > Département de mathématique
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Counting Subwords Occurrences in Base-b Expansions
Publication date :
2018
Journal title :
Integers
eISSN :
1553-1732
Publisher :
Integers, Carrollton, United States - Georgia
Special issue title :
Special Volume in Honor of Jeffrey Shallit on the Occasion of His 60th Birthday
Volume :
18A
Pages :
Paper #13, 32pp.
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 12 January 2018

Statistics


Number of views
146 (27 by ULiège)
Number of downloads
121 (8 by ULiège)

Bibliography


Similar publications



Contact ORBi