[en] Auroral emissions are expected from the footprint of Callisto in Jupiter's upper atmosphere owing to the known interaction of its atmosphere with Jupiter's magnetosphere, and from the observed auroral emissions from the footprints of the other three Galilean satellites. The mapping of Callisto along modeled magnetic field lines at Jupiter, however, places the expected footprint at the same latitude as the main auroral emissions, making it difficult to detect. We analyzed ultraviolet images of Jupiter taken using the HST/ACS instrument during a large observing campaign in 2007. Using a co-addition method similar to one used for Enceladus, we have identified a strong candidate for the footprint of Callisto on May 24, 2007. We tested this finding by applying the same co-addition technique to a nearly identical auroral configuration on May 30, 2007 when Callisto was behind Jupiter, not visible from Earth (CML = 22°; sub-Callisto system III longitude = 327°). By comparing the two co-added images, we can clearly see the presence of a strongly sub-corotating spot close to the expected Callisto footprint location on 24th May and its absence on 30th May. On the 24th Callisto was located in the current sheet. We also found a probable candidate on 26th May 2007 during which time Callisto was positioned below the current sheet. The measured location and intensity of the auroral emission provides important information about the interaction of Callisto with Jupiter's magnetic field, the corotating plasma, and the neutral and ionized state of the thin atmosphere of Callisto.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bhattacharyya, Dolon
Clarke, John T.
Montgomery, Jordan
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Evidence for Auroral Emissions from Callisto's Footprint in HST UV Images
Acuña, M. H., Behannon, K. W., & Connerney, J. E. P. (1983). Jupiter's magnetic field and magnetosphere. In A. J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 1–50). Cambridge, UK: Cambridge University Press.
Behannon, K. W., Burlaga, L. F., & Ness, N. F. (1981). The Jovian magnetotail and its current sheet. Journal of Geophysical Research, 86, 8385–8401.
Belcher, J. W. (1987). The Jupiter-Io connection, an Alfven engine in space. Science, 238(4824), 170–176. https://doi.org/10.1126/science.238.4824.170
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter's decametric emission. Nature, 203(4949), 1008–1010. https://doi.org/10.1038/2031008a0
Bonfond, B. (2012). When moons create aurora: The satellite footprints on giant planets. In A. Keiling, et al. (Eds.), Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets (pp. 133–140). Washington, DC: American Geophysical Union.
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35, L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114, A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J. C., Stallard, T., Clarke, J. T., Yoneda, M., … Gustin, J. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01105. https://doi.org/10.1029/2011GL050253.
Bonfond, B., Hess, S., Bagenal, F., Gérard, J. C., Grodent, D., Radioti, A., … Clarke, J. T. (2013). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40, 4977–4981. https://doi.org/10.1002/grl.50989
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J. C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., … Westphal, J. A. (1996). Far-ultraviolet imaging of Jupiter's aurora and the Io “footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J. C., … Waite, J. H. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J. T., Nichols, J., Gérard, J. C., Grodent, D., Hansen, K. C., Kurth, W., … Cecconi, B. (2009). Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 114, A05210. https://doi.org/10.1029/2008JA013694
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3 + at the foot of the Io flux tube in Jupiter's atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Acuna, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103, 11,929–11,939. https://doi.org/10.1029/97JA03726
Crary, F. J. (1997). On the generation of an electron beam by Io. Journal of Geophysical Research, 102, 37–49. https://doi.org/10.1029/96JA02409
Crary, F., & Bagenal, F. (1997). Coupling the plasma interaction at Io to Jupiter. Geophysical Research Letters, 24, 2135–2138. https://doi.org/10.1029/97GL02248
Cunningham, N. J., Spencer, J. R., Feldman, P. D., Strobel, D. F., France, K., & Osterman, S. N. (2015). Detection of Callisto's oxygen atmosphere with the Hubble Space Telescope. Icarus, 254, 178–189. https://doi.org/10.1016/j.icarus.2015.03.021
Delamere, P. A., Otto, A., Ma, X., Bagenal, F., & Wilson, R. J. (2015). Magnetic flux calculation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 120, 4229–4245. https://doi.org/10.1002/2015JA021036
Dols, V., Gérard, J. C., Clarke, J. T., Gustin, J., & Grodent, D. (2000). Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and GHRS observations. Icarus, 147(1), 251–266. https://doi.org/10.1006/icar.2000.6415
Gérard, J. C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). The morphology of the ultraviolet Io footprint emission and its control by Io's location. Journal of Geophysical Research, 111, A04202. https://doi.org/10.1029/2005JA011327
Gladstone, G. R., Stern, S. A., Slater, D. C., Versteeg, M., Davis, M. W., Retherford, K. D., … Nichols, J. D. (2007). Jupiter's nightside airglow and aurora. Science, 318(5848), 229–231. https://doi.org/10.1126/science.1147613
Goertz, C. (1980). Io's interaction with the plasma torus. Journal of Geophysical Research, 85, 2949–2956. https://doi.org/10.1029/JA085iA06p02949
Goldreich, P., & Lynden-Bell, D. (1969). Io, a Jovian unipolar inducer. The Astrophysical Journal, 156, 59–78. https://doi.org/10.1086/149947
Grodent, D., Bonfond, B., Gerard, J.-C., Radioti, A., Gustin, J., Clarke, J. T., … Connerney, J. E. P. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. Journal of Geophysical Research, 113, A09201. https://doi.org/10.1029/2008JA013185
Grodent, D., Bonfond, B., Radioti, A., Gérard, J. C., Jia, X., Nichols, J., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research, 114, A07212. https://doi.org/10.1029/2009JA014289
Gurnett, D. A., Persoon, A., Kurth, W., Roux, A., & Bolton, S. (2000). Plasma densities in the vicinity of Callisto from Galileo plasma waver observations. Geophysical Research Letters, 27, 1867–1870. https://doi.org/10.1029/2000GL003751
Gustin, J., Bonfond, B., Grodent, D., & Gérard, J. C. (2012). Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets. Journal of Geophysical Research, 117, A07316. https://doi.org/10.1029/2012JA017607
Hartkorn, O., Saur, J., & Strobel, D. (2017). Structure and density of Callisto's atmosphere from a fluid-kinetic model of its ionosphere: Comparison with HST and Galileo observations. Icarus, 282, 237–259. https://doi.org/10.1016/j.icarus.2016.09.020
Hess, S., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115, A06205. https://doi.org/10.1029/2009JA014928
Hess, S., Delamere, P. A., Dols, V., & Ray, L. C. (2011). Comparative study of the power transferred from satellite-magnetosphere interactions to auroral emissions. Journal of Geophysical Research, 116, A01202. https://doi.org/10.1029/2010JA015807
Hess, S., Bonfond, B., & Delamere, P. A. (2013). How could the Io footprint disappear? Planetary and Space Science, 89, 102–110. https://doi.org/10.1016/j.pss.2013.08.014
Hess, S., Bonfond, B., Chantry, V., Gérard, J.-C., Grodent, D., Jacobsen, S., & Radioti, A. (2013). Evolution of the Io footprint brightness II: Modeling. Planetary and Space Science, 88, 76–85.
Hill, T. W., Dessler, A. J., & Goertz, C. K. (1983). Magnetospheric Models. In Physics of Jovian Atmosphere (A83-26611 10-91) (pp. 353–394). Cambridge University Press.
Jia, X., Kivelson, M. G., Khurana, K. K., & Walker, R. J. (2010). Magnetic fields of the satellites of Jupiter and Saturn. Space Science Reviews, 152(1-4), 271–305. https://doi.org/10.1007/s11214-009-9507-8
Khurana, K., & Schwarzl, H. K. (2005). Global structure of Jupiter's magnetospheric current sheet. Journal of Geophysical Research, 110, A07227. https://doi.org/10.1029/2004JA010757
Khurana, K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., … Kurth, W. S. (2004). The configuration of Jupiter's magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge planetary sceince (Vol. 1, pp. 593–616). Cambridge, UK: Cambridge University Press.
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., … Schubert, G. (1996). Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature, 384(6609), 537–541. https://doi.org/10.1038/384537a0
Kivelson, M. G., Khurana, K. K., Stevenson, D. J., Bennett, L., Joy, S., Russell, C. T., … Polanskey, C. (1999). Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. Journal of Geophysical Research, 104, 4609–4625. https://doi.org/10.1029/1998JA900095
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interaction with satellites. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge planetary science (Vol. 1, pp. 513–536). Cambridge, UK: Cambridge University Press.
Kliore, A., Anabtawi, A., Herrera, R. G., Asmar, S. W., Nagy, A. F., Hinson, D. P., & Flasar, F. M. (2002). Ionosphere of Callisto from Galileo radio occultation observations. Journal of Geophysical Research, 107, 1407. https://doi.org/10.1029/2002JA009365
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., … Paterson, W. R. (2004). Dynamics of the Jovian Magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge planetary science (Vol. 1, pp. 617–638). Cambridge, UK: Cambridge University Press.
Liuzzo, L., Feyerabend, M., Simon, S., & Morschmanmn, U. (2015). The impact of Callisto's atmosphere on its plasma interaction with the Jovian magnetosphere. Journal of Geophysical Research: Space Physics, 120, 9401–9427. https://doi.org/10.1002/2015JA021792
Liuzzo, L., Simon, S., Feyerabend, M., & Motschmann, U. (2016). Disentangling plasma interaction and induction signatures at Callisto: The Galileo C10 flyby. Journal of Geophysical Research: Space Physics, 121, 8677–8694. https://doi.org/10.1002/2016JA023236
Menietti, J. D., Gurnett, D. A., & Christopher, I. (2001). Control of Jovian radio emission by Callisto. Geophysical Research Letters, 28, 3047–3050. https://doi.org/10.1029/2001GL012965
Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., & Pringle, G. J. (2011). A.I.K.E.F.: Adaptive hybrid model for space plasma simulations. Computer Physics Communications, 182, 946–966.
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., … Olivieri, A. (2017). Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 44, 5308–5316. https://doi.org/10.1002/2017GL072954
Neubauer, F. M. (1980). Nonlinear standing Alfvén wave current system at Io: Theory. Journal of Geophysical Research, 85, 1171–1178. https://doi.org/10.1029/JA085iA03p01171
Neubaur, F. M. (1998). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. Journal of Geophysical Research, 103, 843–866.
Nichols, J. D., Clarke, J. T., Gérard, J. C., & Hansen, K. C. (2009). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114, A06210. https://doi.org/10.1029/2009JA014051
Piddington, J. H., & Drake, J. F. (1968). Electrodynamic effects of Jupiter's satellite Io. Nature, 217(5132), 935–937. https://doi.org/10.1038/217935a0
Prangé, R., Rego, D., Southwood, D., Zarka, P., Miller, S., & Ip, W. (1996). Rapid energy dissipation and variability of the Io-Jupiter electrodynamic circuit. Nature, 379(6563), 323–325. https://doi.org/10.1038/379323a0
Radioti, A., Grodent, D., Gérard, J.-C., Bonfond, B., & Clarke, J. T. (2008). Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter's magnetotail. Geophysical Research Letters, 35, L03104. https://doi.org/10.1029/2007GL032460
Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson, M. G. (2004). Plasma interaction of Io with its plasma torus. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge planetary science (Vol. 1, pp. 537–560). Cambridge, UK: Cambridge University Press.
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy & Astrophysics, 552, 20.
Seufert, M. (2012). Callisto: Induction Signals, Atmosphere and Plasma Interaction Dissertation. University of Cologne. Retrieved from http://kups.ub.uni-koeln.de/4903
Vasavada, A., Bouchez, A. H., Ingersoll, A. P., Little, B., & Anger, C. D. (1999). Jupiter's visible aurora and Io footprint. Journal of Geophysical Research, 104, 27,133–27,142. https://doi.org/10.1029/1999JE001055
Vogt, M., Kivelson, M. G., Khurana, K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter's auroral features to magnetospheric sources. Journal of Geophysical Research, 116, A03220. https://doi.org/10.1029/2010JA016148
Wannawichian, S., Clarke, J. T., & Pontius, D. H. Jr. (2008). Interaction evidence between Enceladus's atmosphere and Saturn's magnetosphere. Journal of Geophysical Research, 113, A07217. https://doi.org/10.1029/2007JA012899
Wannawichian, S., Clarke, J. T., & Nichols, J. (2010). Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites auroral footprint brightness. Journal of Geophysical Research, 115, A02206. https://doi.org/10.1029/2009JC014456
Wannawichian, S., Clarke, J. T., Bagenal, F., Smyth, W. H., Peterson, C. A., & Nichols, J. D. (2013). Longitudinal modulation of the brightness of Io's auroral footprint emission: Comparison with models. Journal of Geophysical Research: Space Physics, 118, 3336–3345. https://doi.org/10.1002/jgra.50346
Zimmer, C., Khurana, K., & Kivelson, M. (2000). Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus, 147(2), 329–347. https://doi.org/10.1006/icar.2000.6456