Arnoux, P., Labbé, S.: On some symmetric multidimensional continued fraction algorithms. Ergodic Theor. Dyn. Syst., 1–26 (2017). doi:10.1017/etds.2016.112
Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n +1. Bull. Soc. Math. France 119(2), 199–215 (1991)
Arnoux, P., Starosta, Š.: The Rauzy gasket. In: Barral, J., Seuret, S. (eds.) Further Developments in Fractals and Related Fields, pp. 1–23. Birkhäuser/Springer, New York (2013). doi:10.1007/978-0-8176-8400-6 1, Trends in Mathematics
Baldwin, P.R.: A convergence exponent for multidimensional continued-fraction algorithms. J. Stat. Phys. 66(5–6), 1507–1526 (1992)
Berthé, V., Labbé, S.: Factor complexity of S-adic words generated by the Arnoux-Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015). doi:10.1016/j.aam.2014.11.001
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, R.G.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015). doi:10.1007/s00605-014-0721-4
Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematisch Centrum, Amsterdam (1981)
Cassaigne, J.: Un algorithme de fractions continues de complexité linéaire, DynA3S meeting, LIAFA, Paris, 12th October 2015. http://www.irif.fr/dyna3s/Oct2015
Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and Brun words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 119–131. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40579-2_14
Labbé, S.: 3-dimensional Continued Fraction Algorithms Cheat Sheets, November 2015. http://arxiv.org/abs/arxiv:1511.08399
Leroy, J.: An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n + 1) − p(n) ≤ 2. Discrete Math. Theor. Comput. Sci. 16(1), 233–286 (2014)
Schweiger, F.: Multidimensional Continued Fractions. Oxford University Press, New York (2000)