Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors.
Joris, Marine ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Schloesser, Marie ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Baurain, Denis ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes
Hanikenne, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Motte, Patrick ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Language :
English
Title :
Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors.
Zhong, X.Y., Wang, P., Han, J., Rosenfeld, M.G. and Fu, X.D. (2009) SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol. Cell, 35, 1-10.
Long, J.C. and Caceres, J.F. (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem. J., 417, 15-27.
Howard, J.M. and Sanford, J.R. (2015) The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA, 6, 93-110.
Manley, J.L. and Krainer, A.R. (2010) A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev., 24, 1073-1074.
Fu, X.D. and Ares, M. Jr (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689-701.
Lee, Y. and Rio, D.C. (2015) Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem., 84, 291-323.
Pandit, S., Zhou, Y., Shiue, L., Coutinho-Mansfield, G., Li, H., Qiu, J., Huang, J., Yeo, G.W., Ares, M. Jr and Fu, X.D. (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell, 50, 223-235.
Bradley, T., Cook, M.E. and Blanchette, M. (2015) SR proteins control a complex network of RNA-processing events. RNA, 21, 75-92.
Anko, M.L. (2014) Regulation of gene expression programmes by serine-arginine rich splicing factors. Semin. Cell Dev. Biol., 32, 11-21.
Li, X., Wang, J. and Manley, J.L. (2005) Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev., 19, 2705-2714.
Ring, H.Z. and Lis, J.T. (1994) The SR protein B52/SRp55 is essential for Drosophila development. Mol. Cell. Biol., 14, 7499-7506.
Jumaa, H., Wei, G. and Nielsen, P.J. (1999) Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20. Curr. Biol., 9, 899-902.
Longman, D., Johnstone, I.L. and Caceres, J.F. (2000) Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J., 19, 1625-1637.
Blum, M., De Robertis, E.M., Wallingford, J.B. and Niehrs, C. (2015) Morpholinos: antisense and sensibility. Dev. Cell, 35, 145-149.
Summerton, J.E. (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top. Med. Chem., 7, 651-660.
Corey, D.R. and Abrams, J.M. (2001) Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol., 2, 1015.1-1015.3.
Nutt, S.L., Bronchain, O.J., Hartley, K.O. and Amaya, E. (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis, 30, 110-113.
Kos, R., Reedy, M.V., Johnson, R.L. and Erickson, C.A. (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development, 128, 1467-1479.
Coonrod, S.A., Bolling, L.C., Wright, P.W., Visconti, P.E. and Herr, J.C. (2001) A morpholino phenocopy of the mouse mos mutation. Genesis, 30, 198-200.
Ekker, S.C. (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast, 17, 302-306.
Nasevicius, A. and Ekker, S.C. (2000) Effective targeted gene 'knockdown' in zebrafish. Nat. Genet., 26, 216-220.
Kim, H. and Kim, J.S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15, 321-334.
Irion, U., Krauss, J. and Nusslein-Volhard, C. (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development, 141, 4827-4830.
Hoshijima, K., Jurynec, M.J. and Grunwald, D.J. (2016) Precise editing of the zebrafish genome made simple and efficient. Dev. Cell, 36, 654-667.
Gaj, T., Gersbach, C.A. and Barbas, C.F. 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397-405.
Kok, F.O., Shin, M., Ni, C.W., Gupta, A., Grosse, A.S., van Impel, A., Kirchmaier, B.C., Peterson-Maduro, J., Kourkoulis, G., Male, I. et al. (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell, 32, 97-108.
Law, S.H. and Sargent, T.D. (2014) The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS One, 9, e100268.
Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M. and Stainier, D.Y. (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 524, 230-233.
Stainier, D.Y., Kontarakis, Z. and Rossi, A. (2015) Making sense of anti-sense data. Dev. Cell, 32, 7-8.
Lawson, N.D. (2016) Reverse Genetics in Zebrafish: Mutants, Morphants, and Moving Forward. Trends Cell Biol., 26, 77-79.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. and Schilling, T.F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn., 203, 253-310.
Thisse, C. and Thisse, B. (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc., 3, 59-69.
Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A. and Ekker, S.C. (2007) p53 activation by knockdown technologies. PLoS Genet., 3, e78.
Gagnon, J.A., Valen, E., Thyme, S.B., Huang, P., Akhmetova, L., Pauli, A., Montague, T.G., Zimmerman, S., Richter, C. and Schier, A.F. (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One, 9, e98186.
Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M. and Valen, E. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res., 42, W401-W407.
Trapnell, C., Pachter, L. and Salzberg, S.L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111.
Anders, S., McCarthy, D.J., Chen, Y., Okoniewski, M., Smyth, G.K., Huber, W. and Robinson, M.D. (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc., 8, 1765-1786.
Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166-169.
Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.
Shen, S., Park, J.W., Huang, J., Dittmar, K.A., Lu, Z.X., Zhou, Q., Carstens, R.P. and Xing, Y. (2012) MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res., 40, e61.
Mockenhaupt, S. and Makeyev, E.V. (2015) Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol., 47-48, 32-39.
Kozak, M. (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299, 1-34.
Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. and Huber, W. (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21, 3439-3440.
Gao, Y., Zhang, Y., Zhang, D., Dai, X., Estelle, M. and Zhao, Y. (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. U.S.A., 112, 2275-2280.
Yamamoto, S., Jaiswal, M., Charng, W.L., Gambin, T., Karaca, E., Mirzaa, G., Wiszniewski, W., Sandoval, H., Haelterman, N.A., Xiong, B. et al. (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 159, 200-214.
De Souza, A.T., Dai, X., Spencer, A.G., Reppen, T., Menzie, A., Roesch, P.L., He, Y., Caguyong, M.J., Bloomer, S., Herweijer, H. et al. (2006) Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice. Nucleic Acids Res., 34, 4486-4494.
Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. and Bartel, D.P. (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147, 1537-1550.
Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P. et al. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol., 33, 187-197.
Coffman, J.A., Dickey-Sims, C., Haug, J.S., McCarthy, J.J. and Robertson, A.J. (2004) Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene. BMC Biol., 2, 6.
Wahl, M.C., Will, C.L. and Luhrmann, R. (2009) The spliceosome: design principles of a dynamic RNP machine. Cell, 136, 701-718.
Eisen, J.S. and Smith, J.C. (2008) Controlling morpholino experiments: don't stop making antisense. Development, 135, 1735-1743.