Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles
Machrafi, Hatim; Lebon, Georgy; Iorio, C. S.
2016 • In Composites Science and Technology, 130, p. 78-87
Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Lebon, Georgy ; Université de Liège - ULiège > Relations académiques et scientifiques (Sciences)
Iorio, C. S.; Université Libre de Bruxelles, Physical Chemistry, Av. Roosevelt 50, Brussels, Belgium
Language :
English
Title :
Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles
Xie S.H., Zhu B.K., Li J.B., Wei X.Z., Xu Z.K. Preparation and properties of polyimide/aluminum nitride composites. Polym. Test. 2004, 23:797-804.
Xu Y., Chung D.D.L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interf. 2000, 7:243-256.
Agarwal S., Khan M.M.K., Gupta R.K. Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 2008, 48:2474-2481.
Wong C.P., Bollampally R.S. Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans. Adv. Pack. 1999, 22:54-59.
Han Z., Wood J.W., Herman H., Zhang C., Stevens G.C. Thermal properties of composites filled with different fillers. Int. Symp. Electrical Insulation 2008, 497-501. Vancouver.
Fukushima K., Takahashi H., Takezawa Y., Hattori M., Itoh M., Yonekura M. High thermal conductive epoxy resins with controlled high-order structure [electrical insulation applications]. Conf. Electrical Insulation and Dielectric Phenomena 2004, 340-343. Boulder CO.
Miyazaki Y., Nishiyama T., Takahashi H., Katagiri J.I., Takezawa Y. Development of highly thermoconductive epoxy composites. Conf. Electrical Insulation and Dielectric Phenomena 2009, 638-641. Virginia Beach, VA.
Ordonez-Miranda J., Alvarado-Gil J.J. Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 2012, 72:853-857.
Tian W.X., Yang R.G. Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput. Model Eng. Sci. 2008, 24:123-141.
Tian W.X., Yang R.G. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Appl. Phys. Lett. 2007, 90:263105-263108.
Yang R.G., Chen G., Dresselhaus S.M. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 2005, 72:125418-125424.
Prasher R. Thermal boundary resistance of nanocomposites. Int. J. Heat Mass Transf. 2005, 48:4942-4952.
Jou D., Casas-Vazquez J., Lebon G. Extended Irreversible Thermodynamics 2010, Springer, New York, Dordrecht, Heidelberg, London. fourth ed.
Cattaneo C. Sulla conduzione del calore. Atti Seminario Matematico e Fisico delle Università di Modena 1948, 3:83-101.
Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81:6692-6699.
Minnich A., Chen G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 2007, 91:73105-73107.
Tavman I.H., Akinci H. Transverse thermal conductivity of fiber reinforced polymer composites. Int. Comm. Heat. Mass Transf. 2000, 27:253-261.
Chen H., Witharana S., Jin Y., Kim C., Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 2009, 7:151-157.
Chen H., Ding Y., Tan C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9:367-390.
Kochetov R., Korobko A.V., Andritsch T., Morshuis P.H.F., Picken S.J., Smit J.J. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D. Appl. Phys. 2011, 44:395401.
Timofeeva E.V., Gavrilov A.N., McCloskey J.M., Tolmachev V.V. Thermal conductivity and particle agglomeration in alumina nano-fluids: experiment and theory. Phys. Rev. 2007, 76:061203.
Anoop K.B., Kabelac S., Sundararajan T., Das S.K. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 2009, 106:034909.
Behrang A., Grmela M., Dubois C., Turenne S., Lafleur P.G. Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions. J. Appl. Phys. 2013, 114:014305.
Maxwell J.C. Treatise on Electricity and Magnetism 1881, Clarendon, Oxford.
Hasselman D.P.H., Johnson L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos Mater. 1987, 21:508-515.
Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81:6692.
Hamilton R.I., Crosser O.K. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fund. 1962, 1:187-191.
Wang B.X., Zhou L.P., Peng X.F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. Heat. Mass Transf. 2003, 46:2665-2672.
Barnes H.A., Hutton J.F., Walters K. An Introduction to Rheology 1989, Elsevier Science, Amsterdam.
Goodwin J.W., Hughes R.W. Rheology for Chemists-An Introduction 2000, Cambridge: Baker & Taylor Books.
Prasher R., Evans W., Meakin P., Fish J., Phelan P., Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 2006, 89:143119.
Hui P.M., Zhang X., Markworth A.J., Stroud D. Thermal conductivity of graded composites: numerical simulations and an effective medium approximation. J. Mater. Sci. 1999, 34:5497-5503.
Hess S. On nonlocal constitutive relations, continued fraction expansion for the wave vector dependent diffusion coefficient. Z Naturforsch 1977, 32a:678-684.
Duong H.M., Yamamoto N., Bui K., Papavassiliou D.V., Maruyama S., Wardle B.I. Morphology effects on nonisotropic thermal conduction of aligned single-walled and multi-walled carbon nanotubes in polymer nanocomposites. J. Phys. Chem. C 2010, 114:8851-8860.
Zeng T., Chen G. Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Transf. 2001, 123:340-347.
Zhao Y., Zhu C., Wang S., Tian J.Z., Yang D.J., Chen C.K., Cheng H., Hing P. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films. J. Appl. Phys. 2004, 96:4563.
Harri D.C., Cambrea L.R., Johnson I.F., Seaver R.T., Baronowski M., Gentilman R., Nordahl C.S., Gattuso T., Silberstein S., Rogan P., Hartnett T., Zelinski B., Sunne W., Fest E., Pois W.H., Willingham C.B., Turri G., Warren C., Bass M., Zelmon D.E., Goodrich S.M. Properties of an infrared-transparent MgO: Y2O3 nanocomposite. J. Am. Ceram. Soc. 2013, 96:3828-3835.
Carter C.B., Norton M.G. Ceramic Materials: Science and Engineering 2007, Springer, New York.
Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 1998, 57:14958.
Machrafi H., Lebon G. Effective thermal conductivity of spherical particulate nanocomposites: comparison with theoretical models, monte Carlo simulations and experiments. Int. Nanosci. 2014, 13:1450022.
Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: a review. Sci. Adv. Mater. 2011, 3:1-25.
Ammala A., Bell C., Dean K. Poly(ethylene terephthalate) clay nanocomposites: improved dispersion based on an aqueous ionomer. Compos Sci. Technol. 2008, 68:1328-1337.
Nolte H., Schilde C., Kwade A. Determination of particle size distributions and the degree of dispersion in nanocomposites. Compos. Sci. Technol. 2012, 72:948-958.
Choudhury M., Mohanty S., Nayak S.K., Aphale R. Preparation and characterization of electrically and thermally conductive polymeric nanocomposites. J. Min. Mater. Charact.. Eng. 2012, 11:744-756.
Kochetov R., Andritsch T., Lafont U., Morshuis P.H.F., Picken S.J., Smit J.J. Thermal behaviour of epoxy resin filled with high thermal conductivity nanopowders. IEEE Electr. Ins. Conf. 2009, 524-528.
Fu Y.X., He Z.X., Mo D.C., Lu S.S. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int. J. Therm. Sci. 2014, 86:276-283.
Fu Y.X., He Z.X., Mo D.C., Lu S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014, 66:493-498.
Wang Z., Qi R., Wang J., Qi B. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram. Int. 2015, 41:13541-13546.
Zhou T., Wang X., Cheng P., Wang T., Xiong D., Wang X. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. eXpress Polym. Lett. 2013, 7(7):585-594.
Hong J.P., Sun S.W., Hwang T., Oh J.S., Hong C., Nam J.D. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 2012, 537:70-75.
Yu W., Xie H., Yin L,Zhao J., Xia L., Chen L. Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int. J. Therm. Sci. 2015, 91:76-82.
Prasher R., Phelan P.E., Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6(7):1529-1534.
Lebon G., Machrafi H., Grmela M. An extended irreversible thermodynamic modelling of size-dependent thermal conductivity of spherical nanoparticles dispersed in homogeneous media. Proc. Roy. Soc. A 2015, 471:20150144.
Moreira D.C., Braga N.R., Sphaier L.A., Nunes L.C.S. Size effect on the thermal intensification of alumina-filled nanocomposites. J. Compos. Mater. 2016, 10.1177/0021998315624253.
Gómez-Graña S., Hubert F., Testard F., Guerrero-Martínez A., Grillo I., Liz-Marzán L.M., Spalla O. Surfactant (Bi)Layers on gold nanorods. Langmuir 2012, 28:1453-1459.
Jones O.G., Mezzenga R. Inhibiting, promoting, and preserving stability of functional protein fibrils. Soft Matter 2012, 8:876-895.
Finney E.E., Shields S.P., Buhro W.F., Finke R.G. Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an Avrami-based analysis. Chem. Mater. 2012, 24:1718-1725.
Yon J., Bescond A., Ouf F.X. A simple semi-empirical model for effective density measurements of fractal aggregates. J. Aero. Sci. 2015, 87:28-37.
Krishnan A., Xu L.R. A simple effective flaw model on analyzing the nanofiller agglomeration effect of nanocomposite materials. J. Nanomater. 2012, 2011:483093.