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Abstract. A thermodynamic model for transient heat conduction in ceramic-polymer 

nanocomposites is proposed. The model takes into account particle’s size, particle’s 

volume fraction, and interface characteristics with emphasis on the effect of 

agglomeration of particles on the effective thermal conductivity of the nanocomposite. 

The originality of the present work is its basement on extended irreversible 

thermodynamics, combining nano- and continuum-scales without invoking molecular 

dynamics. The model is compared to experimental data using the examples of SiO2, AlN 

and MgO nanoparticles embedded in epoxy resin. The analysis is limited to spherical 

nanoparticles. The dependence of the degree of agglomeration with respect of the volume 

fraction of particles is also discussed and a power-law relation is established through a 

kinetic mechanism and experiments performed in our laboratory. This relation is used in 
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our theoretical model, resulting into a good agreement with experiments. It is shown that 

the effective thermal conductivity may either increase or decrease with the degree of 

agglomeration. 

 

Keywords: A. Nano particles; A. Polymer-matrix composites; B. Thermal properties; C. 

Modeling; D. Scanning electron microscopy 

 

1. Introduction 

 

 Polymeric nanocomposites are used in a broad variety of applications and 

industrial domains such as microelectronic packaging, coatings, adhesives and fire-

retardant. In thermal applications, the often low thermal conductivity of the polymeric 

matrix is typically increased by dispersing in the host matrix inorganic fillers, such as 

aluminium nitride (AlN) [1,2], boron nitride (BN) [3] and carbon nanotubes [4], or 

more specifically, ceramic fillers, such as aluminum oxide (Al2O3) [5]. Another way is 

to design a new material where the material orientation is controlled [6, 7]. When fillers 

are used, to determine their influence on the thermal conductivity of nanocomposites, it 

is required to set up models that predict the behavior of the thermal conductivity as a 

function of several parameters [8].  

 In the case of micro-particles, Fourier’s law of heat conduction provides a 

valuable approach. However, in presence of nanoparticles, Fourier’s law is no longer 

applicable and new models should be developed to include small space scales. Several 

formalisms have been proposed which describe how bulk thermal properties are 

influenced by the addition of nanoparticles. Principally, molecular dynamics approaches 
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based on phonon’s Boltzmann transport equation [9-11] or ad-hoc semi-analytical 

formulations [12, 13] have been developed. The original aspect of the present work is that 

it is based on Extended Irreversible Thermodynamics (EIT) [14]. The basic foundation of 

this theory is to elevate the heat flux and higher order fluxes to the rank of independent 

variable at the same ground as the temperature. The theory is well suited to cope with 

non-local effects, which are important when the space scale becomes comparable or 

smaller than the mean free path of the phonons. In the present paper, EIT will be coupled 

to the effective medium approach (EMA) [15-17], which allows to assimilate the 

nanocomposites, which are heterogeneous materials, to effective homogenized media. 

 In the foregoing, we examine the significance of various effects on the effective 

thermal conductivity of the system, namely the particle’s shape and size, the volume 

fraction of particles, and the boundary matrix-particle interface resistance. We focus also 

on the influence of nanoparticles’ clusters and their progressive agglomeration. For the 

sake of simplicity, the particles are supposed to be spherical and monodisperse. Many 

experiments have been performed on investigating the role of agglomeration [18-22], 

which will therefore be given a special attention. The majority of models taking into 

account nanoparticles’ agglomeration introduce an agglomerate radius that is kept fixed 

[23] or consider a change in agglomerate’s size due to aging [21], without examining the 

influence of volume fraction on the degree of agglomeration.  This point will receive a 

particular attention in this work and a relation between the degree of agglomeration and 

the particle volume fraction will be established experimentally. This relation will be used 

as one of the inputs in our model in order to predict the effective thermal conductivity. 

 The paper is organized as follows. In Section 2, we reformulate the EMA to take 

into account   the presence of agglomeration. This is followed by a short description of 
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EIT. In Section 3, the effect of agglomeration on the effective thermal conductivity of the 

nanocomposites is investigated. The theoretical model is illustrated by means of three 

particulate nanocomposites, namely SiO2, AlN and MgO.particles embedded in 

diepoxide-bisphenol-A, hereafter named epoxy. Section 4 is devoted to experimental data 

about the morphology of the nanoparticles and the correlation between the degree of 

agglomeration and the volume fraction. The final matching between theoretical and 

experimental date is presented in Section 5. Conclusions are drawn in Section 6. 

 

2. Theoretical model  

 

 After giving a general description the effective medium approach, we present a 

modified version taking into account the possibility of formation of agglomeration of 

nanoparticles Afterwards, we briefly recall the derivation of the effective heat 

conductivity of the host matrix and the individual nanoparticles. 

 

2.1. Effective Medium Approach 

 

 Our main purpose is to model heat transport associated to dispersion of 

nanoparticles in a bulk material, called the matrix. The description of such a 

heterogeneous two-component medium can be simplified by appropriately homogenizing 

it, as described within the effective-medium approach, first introduced by Maxwell [24] 

in the framework of electrical conductivity. Following the lines of thought of Hasselman 

[25] and later on by Nan et al [26], the effective heat conductivity 푘  of the 

homogenized nano-composite is given by 
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푘 = 푘 ( ) ( )
( ) ( )

.         (1) 

 

In this equation, k is the heat conductivity coefficient, subscripts 푚 and  푝 refer to the 

matrix, and suspended particle respectively, 휑 is the volume fraction of the particles and 

훼 is a dimensionless parameter related to the particle-matrix interface given by 

   

훼 = 푅푘 /푎 ,             (2) 

 

where 푎  is the radius of the nanoparticle, 푅 is the thermal boundary resistance coefficient 

and 푅푘  the so-called Kapitza radius. Throughout the present analysis, it is assumed that 

the nanoparticles are characterized by a diffusive surface, meaning that the direction of 

phonons after impact is independent of the direction of the impacting phonons, this is 

justified as the interface between matrix and agglomerates is generally rougher than that 

between the individual particles and the matrix. The roughness of the surface can be 

macroscopically simulated by introducing a surface parameter, called the specularity, 푠. 

We would use instead of the nanoparticle radius a so-defined specular nanoparticle radius: 

푎 , ≡ 푎 . Purely diffusive surfaces, which is the case in our work, are characterized 

by 푠 = 0. If the surface is perfectly smooth, one would have 푠 → 1. In the latter case, the 

thermal boundary resistance would be completely negligible. In the case of diffusive 

interfaces (푠 = 0), R writes as [16]  

 

푅 = 4/퐶 푣 + 4/퐶 푣 .            (3)  
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with 퐶 standing for the volumetric heat capacity and 푣 for the  group velocity. 

 

2.2. Effect of agglomeration 

 

 To account for the formation of nanoparticles in nanofluids or nanocomposites in 

the form of aggregates, Chen et al. [18] introduced a modification in the conventional 

Hamilton-Crosser model [27], by first substituting 휑 by the agglomerate volume fraction 

휑 , defined as 

 

휑 = 휑 ,                 (4) 

 

where 푎 ,  is the agglomerate radius and 퐷 a fractal index. 퐷 has typical values of 1.6∼2.5 

for aggregates of spherical nanoparticles and 1.5∼2.45 for those of rod-like nanoparticles 

depending on the type of aggregation, chemistry environment, particle size and shape, 

and shear flow conditions [28]. The value for 퐷 is often taken equal to 1.8 and since the 

thermal conductivity appears to depend only weakly on its value [18, 28-31], we will here 

work with this value. 

In presence of agglomerates, Chen et al [18] propose to modify expression (1) of the 

effective thermal conductivity as follows 

 

푘 = 푘 ( ) [( ) ]
( ) [( ) ]

,                (5) 
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wherein 휑 has been replaced by 휑   and 푘  by 푘 , the agglomerate thermal conductivity. 

For a binary mixture of homogeneous spherical inclusions (recall that we approximate 

the nanoparticles in this study as spheres), the mean field approach [32] leads to the result  

 

푘 = 3휑 푘 − 푘 + 2푘 − 푘 + 8푘 푘 + 3휑 푘 − 푘 + 푘 − 2푘  

(6)     

 

where 휑 =  is the volume fraction of particles in the aggregates. In absence of 

agglomeration, for which there is only one particle per aggregate, one has 휑 = 1 and  푘  

reduces to 푘 , as it should.                

 

2.3. Effective thermal conductivity of the matrix and the nanoparticles 

 

 To close the problem, it remains to determine the expressions of 푘  and 푘 . 

According to the classical Boltzmann-Peierls kinetic theory, the heat conductivity of the 

matrix is given, at fixed reference temperature (푇 ), by 

       

푘 = (1/3)(퐶 푣 Λ )| .        (7)                       

 

wherein Λ  is the mean free path of the phonons in the matrix. Following Matthiesens’ 

rule, it is of the form 

=
,

+
,

       (8) 
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with Λ ,   designating the contribution from the bulk and Λ ,  the supplementary 

contribution arising from  collisions at the agglomerate-matrix interface, the latter being  

given  by [16], 

Λ , = 4푎 , /3휑.    (9) 

 

Note that this expression differs from the one given in [16] in that the agglomerate volume 

fraction is used instead of 휑 and the agglomerate radius instead of the radius 푎 . 

 We are now left with the determination of 푘 . Instead of using an expression 

similar to Eq. (9) for 푘 , we propose a new closed-form formula,  

 

푘 = 	 푘 푓(퐾푛),                         (10) 

 

consisting in a constant value 푘  multiplied by a correction factor 푓(퐾푛), which takes 

into account the nano scale of the particles through the Knudsen number 퐾푛 defined 

below. The quantity 푘  is the thermal conductivity, at a given reference temperature, of 

the bulk material of which the nanoparticle is composed of  

                                                

        푘 = 푘 , | ,                  (11) 

 

its expression being analogous to ( 9) for the matrix, i.e.  

  

푘 = (퐶 푣 Λ , )| .    (12) 
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With the difference that now the mean free path is the bulk one (so that Λ = Λ , ), the 

contribution of the collisions are hidden in the correction factor 푓(퐾푛). The latter will be 

determined from EIT and depends on the radius of the particle and on the mean free path 

of the phonons inside the particle, Λ , , so that it is rather natural to define the Knudsen  

number as  

 

퐾푛 ≡ Λ , /푎 , .      (13) 

  

 At nanoscales, heat transport is mostly influenced by non-local effects. The 

classical Fourier law 

풒 = −푘훻푇,      (14) 

 

relating the heat flux vector 풒 to the temperature gradient 훻푇 is not applicable at small 

time and spatial scales. In order to account for small scale times or high frequencies, 

Fourier’s law has been generalized by Cattaneo [14] under the form  

 

휏휕 풒 + 풒 = −푘훻푇,      (15) 

 

with 휏 designating the relaxation time of the heat flux and  휕  the time derivative. 

Unfortunately, Cattaneo’s relation is not able to cope with non-local effects which are 

dominant at small length scales. These non-local effects are elegantly introduced in the 

framework of EIT by appealing to a hierarchy of fluxes 푸( ), 푸( ), ..., 푸( ) with 푸( ) 

identical to the heat flux vector 풒, 푸( ) (a tensor of rank two) is the flux of 풒, 푸( )  the 

flux of 푸( ) and so on. From the kinetic theory point of view, the quantities 푸( )and 푸( ) 
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represent the higher moments of the velocity distribution. Omitting non-linear 

contributions in the fluxes, the hierarchy of equations can be cast in the form (see for 

more details chapter 4 in Ref. 4) 

 

                                       ∇푇 − 훼 휕 풒 + 훽 ∇ ∙ 푸( ) = 휇 푸( ),                                  (16) 

 

훽 ∇푸( ) − 훼 휕 푸( ) + 훽 ∇ ∙ 푸( ) = 휇 푸( ), (푛 = 2,3, …),     (17)

          

wherein 훼 , 훽  and 휇  are phenomenological coefficients related to the relaxation times, 

correlation lengths and transport coefficients, respectively. Equation (16) is a 

generalization of Cattaneo’s law (15). We now consider an infinite number of flux 

variables and apply the spatial Fourier transform  

                                        풒(풌, 푡) = ∫ 풒(풓, 푡)푒 풌⋅풓 푑풓                                             (18)                                 

  

to the whole set of equations (16) and (17), with 풒 the Fourier transform of 풒, 풓 the spatial 

variable, 푡 the time and 풌 the wavenumber. This operation leads to the following time-

evolution equation for the heat flux: 

                                       

                                       휏̅(풌)휕 풒(풌, 푡) + 풒(풌, 푡) = −푖풌푘 (풌)푇(풌, 푡),                       (19) 

 

where 휏̅(풌) = 훼 /휇  designates a renormalized relaxation time depending generally on 

풌 while the quantity of interest in our study, namely the 풌–dependent heat conductivity  

푘 (풌) is given by the continued-fraction  
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 푘 (풌) = 풌ퟐ

풌ퟐ

ퟏ
풌ퟐ
ퟏ ⋯

,   (20) 

 

with 푙  the correlation length defined by 푙 = 훽 /(휇 휇 ). To obtain the result (20), it 

was assumed that the relaxation times 휏  (푛 > 1) corresponding to higher order fluxes 

are negligible with respect to 휏 , which is a hypothesis generally well admitted in kinetic 

theories. In the present problem, there is only one dimension, namely 푎 , so that it is 

natural to define 푘 ≡ 2휋/푎 . By selecting the correlation lengths as 푙 = 푎 푙 , with 

푎 = 푛 /(4푛 − 1) and 푙 identified as the mean free path independently of the order of 

approximation [33], in the asymptotic limit (푛 → ∞), the continued fraction (20) reduces 

to  

 

푘 =
( )

− 1 ,     (21) 

 

leading finally to the following expression for the factor 푓(퐾푛):  

 

푓(퐾푛) =
( )

− 1 .     (22) 

 

We have now collected all the ingredients allowing us to determine the effective heat 

conductivity (5) of the system nanoclusters /matrix. We further proceed by applying our 

model to practical situations with different nanoparticle types embedded in a host 

material. 
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3. Preliminary considerations  

 

3.1. Outline 

 

 The systems examined in this work are respectively SiO2, AlN and MgO 

nanoparticles embedded in an epoxy resin. The material properties of these components 

are given in Table 1. 

 

Table1: Material properties for bulk materials at room temperature (푇 ) 

Material Heat capacity  

[MJ/(m3K)] 

Group velocity  

[m/s] 

Mean free path  

[nm] 

Epoxy resin 1.91a 2400a 0.11b 

SiO2 1.687c 4400c 0.558c 

AlN 2.7d  6980d 51e 

MgO 3.32f 7028g 4.76h 

aReference [34] 

bCalculated from Λ = 3푘/퐶푣 by considering 푘 = 0.168 Wm-1K-1 from Reference [20] 

cReference [35] 

dReference [36] 

eCalculated from Λ = 3푘/퐶푣 by considering 푘 = 319 Wm-1K-1 from Reference [36] 

fCalculated from experimental correlation given in Reference [37] 

gCalculated from 푣 = 3푘/퐶Λ  by considering 푘 = 37 Wm-1K-1 from Reference [38] 

hInterpolation from data at pages 625 and 626 from Reference [38] 

 

Note that the values in Table 1 have been obtained in the framework of the so-called 

“dispersion model” [39] where it is admitted that the phonons have different energies and 
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velocities due to their dispersion. In a previous work [40], we have studied the SiO2-

epoxy mixture in absence of agglomeration, i.e. by using the present model with 휑 = 휑 

and 푘 = 푘 . Satisfactory agreement with experiments [20] was observed. For the sake 

of comparison, the results are recalled in Fig. 1(a) for a particle radius 푎 = 10 nm. It is 

clear that for this system, the dependence with respect to agglomeration is negligible and 

will therefore no longer be discussed in the following. In contrast, in the case of the 

mixture AlN-epoxy [20], the theoretical model fails to fit the experimental data as shown 

in Fig. 1(b) for a primary particle radius 푎 = 11 nm: the experimental values are larger 

than those predicted by the model.  

 

  

Fig. 1. Effective thermal conductivity as a function of the volume fraction for a (a) 

SiO2-epoxy and (b) AlN-epoxy system in absence of agglomeration. Experimental data 

from [20] are represented by the symbol ▲. 

 

 It may be asked whether the discrepancies noted for AlN/epoxy are not due to the 

effect of particle agglomeration. This is indeed confirmed by the results commented in 

Section 3.3. In relation with the formation of clusters, an important parameter is the 

agglomerate radius, sometimes, called the gyration radius, which therefore, deserves 

further comments. 
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3.2. On the agglomerate gyration radius 

 

 When the density of nanoparticles distributed in a matrix becomes important, the 

particles have a tendency to coagulate and, as in colloid suspensions, lead to the formation 

of clusters. Assuming that such clusters fit into a virtual sphere, we can define the 

agglomeration gyration radius 푎 ,  as the radius of such a virtual sphere. Using Eq. (4), 

we are able to find the agglomerate radius as a function of the particle radius.  

 The results of Fig 1.a indicate that SiO2 particles hardly agglomerate and therefore 

푎 , ≈ 푎 , the same observation being made in [20] but this represents a rather 

exceptional situation. In the case of Al2O3 particles dispersed in water, Chen et al [19]. 

propose 푎 , ≈ 3푎 , while Anoop et al [22] take 푎 , = 5푎 . Other authors [21] reported 

for 푎 < 푎 , < 4푎 . In the case of Si/Ge nanocomposites, Behrang et al [23] use  푎 , =

5푎 . Rheology experiments [18] predict 푎 , = 3.34푎  for TiO2 dispersed in ethylene 

glycol with similar values obtained for Al2O3 dispersed in the same alcohol [20]. In the 

forthcoming, we consider AlN and MgO nanoparticles for which experimental gyration 

radii have been measured in our laboratory (see Section 4). 

 

3.3. Numerical results and a first comparison with experimental data 

 

 The results for the effective thermal conductivity as a function of the particle 

volume fraction of the original particles for several values of the agglomerate radii are 

presented in Fig. 2 for AlN and MgO nanoparticles embedded in epoxy resin, 

respectively. To assess the role of the agglomeration, we have also drawn the curves 
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corresponding to absence of clustering for which 푎 , = 푎 . It appears from the selected 

examples that heat conductivity increases with the volume fraction of the nanoparticles 

as a consequence of a larger specific interface area between particles and matrix. The 

formation of clusters has a different effect according to the size of the cluster. For a fixed 

value of the volume fraction, it is a factor of enhancement of the thermal conductivity up 

to a gyration radius a little bit larger than the diameter of the particles but beyond this 

limit, this doping effect is inversed because it corresponds to a reduction of the interface 

area. A more detailed discussion will follow later on. 

 

   

Fig. 2. Effective thermal conductivity versus the original particle volume fraction for 

AlN/epoxy (left) and MgO/epoxy (right) at several agglomerate radii 푎 , , with  푎 =

30	푛푚 for AlN and 푎 = 11	푛푚 for MgO. The curves represent our model and the 

symbol ▲ denotes experimental values [20].  

 

 By comparison with experimental data, our model is shown to predict satisfactory 

agreement at low volume fractions < 10%. In the case of AlN particles, the best agreement 

is reached for 푎 , ≳ 2푎  at low volume fractions (φ < 0.01) and for 푎 , ≈ 3.5푎  at 

higher volume fractions. For MgO particles, a good accord is found for 푎 , ≈ 2푎  at low 

volume fractions (휑 < 0.02) and for 푎 , ≈ 5푎  at higher density. When the volume 
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fraction of the nanoparticles is small, the particles will have less chance to collide with 

each other and the formation of agglomerates is less important. As the volume fraction is 

raising, the interaction between the nanoparticles is increased and so do the agglomerate 

radii. A further validation of our model is given in the next section wherein it is compared 

which experimental data obtained in our laboratory.  

 

4. Experimental and theoretical investigation of the degree of agglomeration 

 

4.1. Nanoparticle morphology characterization 

 

 As a preliminary, it is interesting to discuss the morphology of the nanoparticles. 

In that respect, we have performed scanning electron microscopy (SEM), obtaining 

images of the nanoparticles at different zooms. The nanoparticle powders are first sputter-

coated in gold and then placed on a graphite support into a specimen chamber. Fig. 3 

reproduces the SEM-images of AlN and MgO. 
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Fig. 3. SEM images of AlN (upper) and MgO (lower) with zooms of 500x, 5,000x and 

50,000x, from left to right. 

 

 The observations indicate that AlN exhibits a very compact structure and many 

large agglomerates are present with a narrow distribution. The structure of MgO is, on 

the other hand, less compact. Also the clusters of MgO appear to have a larger distribution 

with a weaker agglomeration. The particle shapes of both materials are the more visible 

in Figure 4 with a larger zoom. These images may also useful to draw some information 

about the size of the particles. 

 

 

 

Fig. 4. SEM image of AlN (left) and MgO (right) at zoom of 130,000x. 
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 Fig. 4 shows that the AlN nanoparticles are clearly discernable having quasi-

regular shapes of cubic-spheroidal type, while the MgO nanoparticles seem to be close to 

regular spheroidal shapes. These observations justify that at least within a first 

approximation, we identify in our theoretical model that the particles are taken as rigid 

spheres, with a given size distribution. As for the particle sizes, we can from Fig.4 obtain 

a mean value for the pseudo spheres’ radii. It is found that the mean particle size values 

(taken as the equivalent diameter 2푎 ) is 54 ± 14 nm for AlN and 53 ± 22 nm for MgO. 

This confirms the larger size distribution of MgO with respect to AlN.  

 

4.2. Correlation between degree of agglomeration and volume fraction 

 

 The results of Fig. 2 suggest that there exists a strong correlation between the 

gyration radius 푎 ,  and the volume fraction 휑. Note that 휑 is determined at the stage 

before the polymerization step occurs [20] by dispersing the nanoparticles into the fluid 

matrix, which is often water-based. To determine the validity of the relation 푎 , (휑) 

expressing the volume-fraction dependence of the gyration radius, we follow a simplified 

protocol which consists in dispersing the nanoparticles in a solvent, say ethanol or water 

without any dispersion agent and measuring the agglomerate radius distribution versus 

the initial particle volume fraction (the volume fraction’s values shows an error less than 

1%). Our procedure refers to [20] wherein the AlN and MgO nanoparticles are first 

dissolved in ethanol and then sonicated to break up in large agglomerates. The 

nanoparticles are then dispersed in the epoxy resin by shear force mixing. The solvent is 

afterwards evaporated and the composite is mixed with a hardener via mechanical stirring 

prior to degassing. Finally, the mixture is cured, obtaining the polymer nanocomposite. 
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What is of importance, is that the nanoparticles are first dissolved in a solvent with a 

given volume fraction. In [20], the solvent is ethanol, but water is also often used, 

presenting similar characteristics [41] (see also [42] for polymer/clay nanocomposites). 

It appears that after dispersing the nanoparticle/solvent mixture within the epoxy resin, 

the size of the particles does not change significantly during curing [42]. We can thus 

safely approximate the particle size distribution as still being mainly established in the 

solvent. Therefore, for our study, it is sufficient to analyze the agglomeration behavior of 

the nanoparticles in the solvent at different volume fractions. We select water as the 

solvent because of the limitations of our particle size measuring device, working 

exclusively with water. We used a Shimadzu (SALD-7500) nano particle size analyzer 

that uses laser diffraction to determine the particles size distribution. Fig. 5 provides two 

examples of the Nanosizer output for AlN and MgO particles, the volume fraction being 

fixed equal to 0.1. 

 

 

Fig. 5. Particle size (2푎 , ) distribution of AlN (left) and MgO (right) at 휑 = 0.1. 

 

 Fig. 5 shows a narrower distribution for AlN than for MgO. For visibility 

purposes, and also because these graphs represent intermediate results, the error bars have 
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been deleted. From the above particle size distributions, we are able to calculate the mean 

particle radius (푎 , ) for each volume fraction. Knowing the initial particle size (푎 ), we 

can trace the degree of agglomeration 푚 ≡ 푎 , /푎  with a certain standard deviation 

(indicated by error bars), against the volume fraction (푚 = 1 means no-agglomeration). 

The results are presented in figure 6. 

 

 

Fig. 6. Degree of agglomeration 푚 against the nanoparticle volume fraction 휑 for AlN 

(left) and MgO (right). The symbol ■ denotes the experimental findings and the dashed 

line is a trend line. 

 

The above results indicate that the agglomerate radius increases with the volume 

fractions. Such an influence of the suspension’s concentration on the particle size 

distribution, and consequently the degree of agglomeration, is also observed in [43]. Our 

next task is to determine the fitting law coping with the experimental data. It is shown in 

the appendix that a suitable expression for the volume-fraction dependence of the degree 

of agglomeration is provided by a power law in the form  

 

푚 = 훽휑 .                           (23) 
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Fitting the trend line (23) with the experimental findings from figure 6 leads to the values 

of the parameters 훽 and 훾, given in table 2. It is worth to stress that the values of the 

parameters are of the same order of magnitude for both systems. 

 

Table 2. Fitting parameters for the degree of agglomeration 

 AlN MgO 

훽 9.0 8.5 

훾 0.25 0.23 

 

5. Final validation of dependence of the effective thermal conductivity versus the 

volume-fraction-dependent agglomeration 

 

 The main interest of (23) is that it allows to represent the effective thermal 

conductivity exclusively in terms of the initial particle volume fraction, without making 

loose assumptions about the degree of agglomeration. Now, figure 7 shows the effective 

thermal conductivity, adapted for the volume-fraction-dependent agglomeration gyration 

radius, as a function of the volume fraction. For comparison, the effective thermal 

conductivity, not taking into account the agglomeration effect, is given as well. 
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Fig. 7. Effective thermal conductivity as a function of volume fraction (dashed line), 

using the fitted relation (23) between the agglomerate radius and the volume fraction for 

AlN-epoxy (left) and MgO-epoxy (right). The solid line refers to absence of 

agglomeration in the model and the symbol ▲ represents the experimental values from 

[20], with 푎 = 30 and 11 nm for AlN and MgO, respectively. 

 

  

Fig. 8. Effective thermal conductivity as a function of volume fraction (dashed line), 

using the fitted relation (23) between the agglomerate radius and the volume fraction for 

AlN-epoxy. The solid line refers to absence of agglomeration in the model and the symbol 

▲ represents the experimental values from [44] (left) and [45] (right), respectively, with 

푎 = 50 nm. 

 

 The results reported on Figs.7 and 8 indicate a good agreement between our model 

and experience. Note especially that the sharp increase at 0 < 휑 < 0.01 for AlN is well 
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represented by our model, stemming from expression (23). One important conclusion is 

that it is imperative to take into account the dependence of the agglomeration radius on 

the volume fraction in the study of agglomeration effects on the thermal conductivity of 

nanocomposites. 

 Another observation is in form. Fig. 2 indicate that, at fixed 휑-values, the effective 

thermal conductivity first increases with the degree of agglomeration 푚, and, after 

reaching a maximum value, at 푚 ≈ 2.5, it starts decreasing towards a constant value. This 

may be interpreted by the fact that for weak degrees of agglomeration, the dimension of 

the particles remains small whence a large 퐾푛 and a large values of 푘 	 (see Eq. (21)); by 

increasing the size of the agglomerate, the interface between the agglomerate and the 

host-matrix is increased and subsequently, the thermal boundary resistance leading to a 

decrease of the thermal conductivity.   

To illustrate the property that agglomeration may either contribute to an increase 

or a decrease of the heat conductivity, we have represented in Fig. 9 the effective thermal 

conductivity (normalized with respect to 푚 = 1) as a function of the degree of 

agglomeration 푚 for three values of the volume fraction; 휑 = 0.01, 0.05 and 0.1. It is 

observed that heat conductivity first increases linearly with the degree of agglomeration, 

reaches a maximum at the percolation threshold and finally decreases. The raising of 

conductivity with size (at nanoscale) was confirmed by many authors [46-51] in the case 

of epoxy resin with various fillers and by Prasher et al [31, 52] in the case of nanofluids. 

The increase of 푘  at small 푚-values may be explained because of the weak 

agglomeration of the particles so that the regime is that of dispersed primary particles. In 

this case, the effective heat conductivity is increasing with the size of the nanoparticles 

[53] because of the smaller thermal interfacial resistance between particles and matrix 
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(see relation (2)). However, after reaching a peak, at larger 푚-values (say cluster radii 

larger than the diameter of the original particles), the influence of agglomeration becomes 

dominating; the contact area of the agglomerates themselves becomes smaller, which 

leads to less heat conduction between the agglomerates and the matrix. Moreover, the 

contact area of the particles within the agglomerates is raising, which causes a larger 

boundary resistance due to more phonon collisions (see relations (2) with (7)-(9)), which 

reduces the heat conduction within the agglomerates as well. Hence, the effective heat 

conductivity decreases altogether with increasing size at larger 푚-values. These results 

are in agreement with those reported in Fig. 2 as well as an experimental study by Moreira 

et al. [54]. Note that there is a maximum value of 푚 which corresponds to 휑 = 1, i.e. 

휑 = 휑 . Making use of the result (4), it is easily checked that the maximum of m is  

 

푚 = 휑 = 휑 .         (24) 

 

after that D has been selected as given by 퐷 = 1.8. 

 

   

Fig. 9. Effective normalized thermal conductivity of the AlN-epoxy (left) and MgO 

(right) systems as a function of the degree of agglomeration 푚, for three volume fractions 
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휑 = 0.01, 0.05 and 0.1. Dots represent the  normalized values taken from Fig. 7 at the 

corresponding volume fractions. 

 

 

 As expected, the sensibility of 푘  versus agglomeration is the most important at 

high particles densities. The dots are the normalized effective thermal conductivity values 

determined from our theoretical model (see figures 7 and 8) at the corresponding volume 

fractions. If it is wished to increase the effective thermal conductivity of the 

nanocomposites discussed in this paper, the results of Fig. 9 indicate that the degree of 

agglomeration (or the agglomeration radius) should be decreased, this can for instance be 

achieved in practice by adding surfactants [55, 56]). One should however remain cautious 

to avoid to reduce 푚 beyond the maximum critical value 푚 ≈ 2.5. 

 The above results are in good agreement with the experimental ones obtained by 

Kochetov et al. [20] based on Transmission Electron Microscopy (TEM) micrographs. 

For AlN and MgO dispersed in epoxy resin with particle radii of 30 and 50, and 11 nm, 

respectively, it follows from [20, 44, 45] that the nanocomposite agglomerate radii are at 

maximum 200 and 50 nm, respectively. This leads to maximum degrees of agglomeration 

of approximately  푚 = 6  and 5, which is in good accord with the results of Fig. 9. 

 

6. Conclusions 

 

 The objective of this work is twofold. Firstly, to determine to which extent the 

nanocomposites investigated in the present work do agglomerate and, secondly, to study 

the influence of agglomeration on the effective thermal conductivity. The effective 
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medium approach (EMA) is used to homogenize the medium whereas the particle-matrix 

interaction is modelled on the bases of extended irreversible thermodynamics (EIT). 

Besides agglomeration, other effects are taken into account as particle size, particle 

volume fraction and thermal boundary resistance. The particles are supposed to be of 

spherical form and the analysis has been limited to purely diffusive scattering of phonons 

on the interface, we have already checked in a previous work [40] that the role of 

specularity of the surfaces is only minute for the kind of nanoparticles studied in this 

work. Extension to particles of different shapes will not raise fundamental difficulties and 

will be explored in the future. 

 With respect to similar works on the subject, we wish to point out two original 

contributions. The first one is linked to the use of EIT leading to the establishment of 

relation (22), the second one is that the degree of agglomeration is explicitly expressed as 

a (power-law) function of the volume fraction (see Eq. (23)). To our knowledge, such an 

effect was not taken into account so far.  

 The present model has been validated against experimental data in the case of 

SiO2, AlN and MgO nanoparticles embedded in an epoxy matrix. It is shown that the 

SiO2-epoxy system does not exhibit significant agglomeration, whereas for the two other 

systems, clustering is relevant. Some of the results are based on experiments performed 

in our laboratory. As expected, the degree of agglomeration increases with the volume 

fraction. It follows also from our analysis that, at a fixed volume fraction, the effect of 

agglomeration is either to increase or to decrease the effective thermal conductivity: at 

loose agglomeration, 푘  tend to increase, while for more compact agglomerates, a 

decrease occurs. A similar behavior was noticed by Behrang et al. [23] and Moreira et al. 

[54]. 
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Appendix: Aggregative growth  

 

 The present appendix provides a qualitative demonstration of the most suitable 

mathematical form for the volume-fraction dependence of the degree of agglomeration. 

We start by considering a simple kinetic mechanism called “aggregative growth” [57]. 

Accordingly, the kinetics of agglomeration are governed by the following equations 

 

푃 + 푃 → 퐴 ,          (A1) 

 

푃 + 퐴 → 1.5퐴,           (A2) 
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where 푃 stands for the nanoparticles and 퐴 for the agglomerate. The “nucleation rate”, 

defined as the rate of the first agglomerate formed from the initial nanoparticles, is given 

by 

 

− = 푘 [푃]  ,          (A3) 

 

with 푘  the rate constant of nucleation and the square brackets denote the molar 

concentration. Note that the term  in (A3) stands for the consumption of 푃 due to 

nucleation only.  The “agglomerative growth rate”, defined as the rate of the agglomerates 

growing due to more adhering nanoparticles, is given by 

 

− = 푘 [푃][퐴] ,          (A4) 

 

wherein kg is the rate constant of agglomerate growth. Note that  in (A4) stands for the 

consumption of 푃 due to agglomerates’ growth only. Similar relations can be written for 

the formation rate of the agglomerate. From (A1) and (A2), we deduct the mass balance  

 

[푃] = [푃] − 2[퐴] ,         (A5) 

 

where the subscript “0” stands for the initial value, noting that at the beginning no 

agglomerate is present, i.e. [퐴] = 0. The factor “2” stems from the ratio 푃:퐴 ≡ 2: 1, so 

that conservation of mass imposes to double the concentration of 퐴. It follows from (A5) 

that = − , so that the total rate law for the agglomeration mechanism is given by 
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= 푘 [푃] + 푘 [푃][퐴].         (A6) 

 

Making use of the initial conditions [퐴]| = [퐴] = 0 and [푃]| = [푃] , and relation 

(A5), the solution of equation (A6) is given by  

 

[퐴] =
[ ]

[ ]

[ ]          (A7) 

 

It is easy to verify from (A7) that for 푡 → ∞, [퐴] = [푃] . This shows that the 

concentration of the agglomerates presents a maximum and this is also true for its size. 

More interesting, it is seen that the final agglomerate concentration depends on the initial 

nanoparticle concentration. This indicates that the agglomerate size (and therefore also 

the degree of agglomeration) is a function of the initial volume fraction of the 

nanoparticles. We can define the number of nanoparticles in an agglomerate at a given 

time, 푁 , by  the proportionality law 

 

푁 = [ ]
[ ]

푁  ,          (A8) 

 

with 푁  the final number of nanoparticles in the agglomerate. Of course, for 푡 → 0, 푁 =

0 and for 푡 → ∞, 푁 = 푁 . The factor 2 stems from the mass balance (A5). However, the 

limit 푡 → ∞ is not realistic and (A8) is not valuable at this value. Especially, when 
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sonicated, 푁  will not reach 푁  but rather an intermediate value 푁  so that equation 

(A8) should rather be written as 

 

푁 = [ ]∗

[ ]
푁  ,         (A9) 

 

where [퐴]∗ < [푃] /2. A relation between the agglomerate’s size 퐷 and the number of 

nanoparticles in the agglomerate can be postulated as 

 

퐷 ∝ 퐶푁  ,          (A10) 

 

with 푏 ≠ 1/3 (푏 = 1/3 corresponds to spherical particles and the agglomerate of 

spherical form as well), meaning that the agglomeration is fractal [58]. Moreover, 퐶 is a 

constant composed out of material constants and geometrical data, being of no importance 

for the present development. Coupling equations (A9) and (A10) results in  

 

∝ 퐶 ∝ 퐶 [ ]
[ ]∗

 .        (A11) 

 

We note also that [푃] ∝ 휑 (which is indirectly also observed by [59] as 푁 ∝ 휑 ) and 

that 푚 ∝ . This brings us to the conclusions that the most suitable fitting for the 

experimental results in Fig. 6 is the power law given by (23). 
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