Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Enhancement of a photovoltaic cell performance by a coupled cooled nanocomposite thermoelectric hybrid system, using extended thermodynamics
[1] Su, S., Wang, Y., Wang, J., Xu, Z., Chen, J., Material optimum choices and parametric design strategies of a photon-enhanced solar cell hybrid system. Sol. Energy Mat. Sol. Cells 128 (2014), 112–118.
[2] Huang, M.J., Eames, P.C., Norton, B., Hewitt, N.J., Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mat. Sol. Cells 95 (2011), 1598–1603.
[3] Liu, W., Lucas, K., McEnaney, K., Lee, S., Zhang, Q., Opeil, C., Chen, G., Ren, Z., Studies on the Bi2Te3–Bi2Se3–Bi2S3 System for mid-temperature thermoelectric energy conversion. Energy Envir Sci. 6 (2013), 552–560.
[4] Sumithra, S., Takas, N.J., Misra, D.K., Nolting, W.M., Poudeu, P.F.P., Stokes, K.L., Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv. Energy Mater 1 (2011), 1141–1147.
[5] Jou, D., Sellitto, A., Cimmelli, V.A., Multi-temperature mixture of phonons and electrons and nonlocal thermoelectric transport in thin layers. Int. J. Heat. Mass Transf. 71 (2014), 459–468.
[6] Machrafi, H., An extended thermodynamic model for size-dependent thermoelectric properties at nanometric scales: application to nanofilms, nanocomposites and thin nanocomposite films. Appl. Math. Mod. 40 (2016), 2143–2160.
[7] Zhang, J., Xuan, Y., Yang, L., Performance of photovoltaic-thermoelectric hybrid systems. Energy 78 (2014), 895–903.
[8] Candadai, A.A., Kumar, V.P., Barshilia, H.C., Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Sol. Energy Mat. Sol. Cells 145 (2016), 333–341.
[9] Ju, X., Wang, Z.F., Flamant, G., Li, P., Zhao, W.Y., Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Sol. Energy 86 (2012), 1941–1954.
[10] Yang, D.J., Yin, H.M., Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans. Energy Convers. 26 (2011), 662–670.
[11] Benghanem, M., Al-Mashraqi, A.A., Daffallah, K.O., Performance of solar cells using thermoelectric module in hot sites. Renew. Energy 89 (2016), 51–59.
[12] Li, Y.L., Witharana, S., Cao, H., Lasfargues, M., Huang, Y., Ding, Y.L., Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology 15 (2014), 39–44.
[13] Jou, D., Casas-Vazquez, J., Lebon, G., Extended Irreversible Thermodynamics, 4rth edition, New York. 2010, Springer, Dordrecht, Heidelberg, London.
[14] Machrafi, H., Heat transfer at nanometric scales described by extended irreversible thermodynamics. Comm. Appl. Ind. Math. 7 (2016), 177–195.
[15] Chávez-Urbiola, E.A., Vorobiev, Y.V., Bulat, L.P., Solar hybrid system with thermoelectric generators. Sol. Energy 86 (2012), 369–378.
[16] Tan, M., Deng, Y., Hao, Y., Enhancement of thermoelectric properties induced by oriented nanolayer in Bi2Te2.7Se0.3 columnar films. Mat. Chem. Phys. 146 (2014), 153–158.
[17] Topic, M., Campa, A., Filipic, M., Berginc, M., Krasovec, U.O., Smole, F., Optical and electrical modelling and characterization of dye-sensitized solar cells. Curr. Appl. Phys. 10 (2010), S425–S430.
[18] Omer, S.A., Infield, D.G., Design optimization of thermoelectric devices for solar power generation. Sol. Energy Mater Sol. Cells 53 (1998), 67–82.
[19] Hua, Y.C., Cao, B.Y., Ballistic-diffusive heat conduction in multiply-constrained nanostructures. Intern. J. Therm. Sci. 101 (2016), 126–132.
[20] Maxwell, J.C., Treatise on Electricity and Magnetism. second ed., 1881, Clarendon, Oxford.
[21] Bruggeman, D., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Anal. Phys. 24 (1935), 636–664.
[22] Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H., Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81 (1997), 6692–6699.
[23] Cattaneo, C., Sulla conduzione del calore. Atti del Semin. Mat. Fis. delle Univ. Modena 3 (1948), 83–101.
[25] Hess, S., On nonlocal constitutive relations, continued fraction rxpansion for the wave vector dependent diffusion coefficient. Z Naturforsch 32a (1977), 678–684.
[26] Norton, M., Gracia Amillo, A.M., Galleano, R., Comparison of solar irradiance measurements using the average photon energy parameter. Sol. Energy 120 (2015), 337–344.
[27] Khriachtchev, L., Silicon Nanophotonics, Basic Principles, Present Status and Perspectives. 2009, Pan Stanford Publishing, Singapore, 317.
[28] Palankovski, V., Quay, R., Analysis and Simulation of Heterostructure Devices. 2004, Springer-Verlag, Vienna.
[29] Richter, A., Glunz, S.W., Werner, F., Schmidt, J., Cuevas, A., Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B, 86, 2012, 165202.
[30] Cuevas, A., Macdonald, D., Measuring and interpreting the lifetime of silicon wafers. Sol. Energy 76 (2003), 255–262.
[31] Alamo, J.A., Swanson, R.M., Modelling of minority-carrier transport in heavily doped silicon emitters. Solid-State Electron. 30 (1987), 1127–1136.
[32] Lu, M., Silicon Heterojunction Solar Cell and Crystallization of Amorphous Silicon. PhD thesis, 2008, University of Delaware, 46.
[33] Salazar, A., Apiñaniz, E., Mendioroz, A., Oleaga, A., A thermal paradox: which gets warmer?. Eur. J. Phys. 31 (2010), 1053–1059.
[34] Balaj, M., Roohi, E., Akhlaghi, H., Myong, R.S., Investigation of convective heat transfer through constant wall heat flux micro/nano channels using DSMC. Intern. J. Heat. Mass Transf. 71 (2014), 633–638.
[35] Satterthwaete, C.B., Ure, R.W., Electrical and thermal properties of Bi2Te3. Phys. Rev. 108 (1957), 1164–1170.
[36] Lee, W.Y., Park, N.W., Hong, J.E., Yoon, S.G., Koh, J.H., Lee, S.K., Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film. J. Alloys Compd. 620 (2015), 120–124.
[37] Lošt’ák, P., Drašar, C., Horák, J., Zhou, Z., Dyck, J.S., Uher, C., Transport coefficients and defect structure of Sb2-xAgxTe3 single crystals. J. Phys. Chem. Solids 67 (2006), 1457–1463.
[38] Cheng, C.H., Huang, S.Y., Cheng, T.C., A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat. Mass Trans. 53 (2010), 2001–2011.
[39] Saci, A., Battaglia, J.L., Kusiak, A., Fallica, R., Longo, M., Thermal conductivity measurement of a Sb2Te3 phase charge nanowire. Appl. Phys. Lett., 104, 2014, 263103.
[40] Venkatasubramanian, R., Lattice thermal conductivity reduction and phonon localization-like behaviour in superlattice structures. Phys. Rev. B 61 (2000), 3091–3097.
[41] Herdt, A., Exploring the electronic properties of novel spintronic materials by photoelectron spectroscopy. Forschungszentrum Jülich GmbH, Duisbg., 2012, 77.
[42] Yang, J.Y., Aizawa, T., Yamamoto, A., Ohta, T., Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1-x prepared by bulk mechanical alloying and hot pressing. J. Alloys Compd. 312 (2000), 326–330.
[43] Bessas, D., Töllner, W., Aabdin, Z., Peranio, N., Sergueev, I., Wille, H.C., Eibl, O., Nielsch, K., Hermann, R.P., Phonon spectroscopy in a Bi2Te3 nanowire array. Nanoscale 5 (2013), 10629–10635.
[44] Sarma, S.D., Li, Q., Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators. Phys. Rev. B, 88, 2013, 081404R.
[45] De Wette, F.W., Kulkarni, A.D., Phonon dispersion, phonon specific heat, and Debye temperature of high-temperature superconductors. Phys. Rev. B 46 (1992), 14922–14925.
[48] Wang, F., Yu, H., Li, J., Wong, S., Sun, X.W., Wang, X., Zheng, H., Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface. J. Appl. Phys., 109, 2011, 084306.
[49] Schmidt, J., Kerr, M., Altermatt, P.P., Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities. J. Appl. Phys., 88, 2000, 1494.
[50] Rein, S., Glunz, S.W., Advanced lifetime spectroscopy. 13th workshop on crystalline silicon solar cell materials and processes. NREL, 2003, 18–25.
[51] Da, Y., Xuan, Y., Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. Opt. Express 21 (2013), A1065–A1077.
[52] Gray, J.L., The physics of the solar cell. Luque, A., Hegedus, S., (eds.) Handbook of photovoltaic science and engineering, Second edition, 2004, Wiley, UK, 82–129.
[53] Gutierrez, E.A., Deen, M.J., Claeys, C.L., Low Temperature electronics: Physics, Devices, Circuits, and Applications. 2001, Elsevier.
[54] Serra, J.M., Gamboa, R., Vallera, A.M., Optical absorption coefficient of polycrystalline silicon with very high oxygen content. Mat. Sci. Eng. B 36 (1996), 73–76.
[55] Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson, R.H. III, Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I., Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11 (2011), 107–112.
[56] Uma, S., McConnell, A.D., Asheghi, M., Kurabayashi, K., Goodson, K.E., Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int. J. Thermophys. 22 (2001), 605–616.
[57] Baek, D., Rouvimov, S., Kim, B., Jo, T.C., Schroder, D.K., Surface recombination velocity of silicon wafers by photoluminescence. Appl. Phys. Lett., 86, 2005, 112110.
[58] Mishima, T., Taguchi, M., Sakata, H., Maruyama, E., Development status of high-efficiency HIT solar cells. Sol. Energy Mat. Sol. Cells 95 (2011), 18–21.
[59] Yamamoto K, Yoshimi M, Suzuki T, Okamoto Y, Tawada Y, Nakajima A. Thin film poly-Si solar cell with “Star Structure” on glass substrate fabricated at low temperature. Conf. Record 26th. IEEE Photovoltaic Specialists Conf., Anaheim, IEEE Press, Piscataway, 575–580.
[60] Sah, R.L.Y., Yamakawa, K.A., Lutwack, R., Effect of thickness on silicon solar cell efficiency. Electron Devices. IEEE Trans. 29 (1982), 903–908.
[61] Lebon, G., Machrafi, H., Thermal conductivity of tubular nanowire composites based on a thermodynamical model. Phys. E 71 (2015), 117–122.
[62] Hashim, H., Bomphrey, J.J., Min, G., Model for geometry optimization of thermoelectric devices in a hybrid PV/TE system. Renew. Energy 87 (2016), 458–463.
[63] Abdin, Z., Alim, M.A., Saidur, R., Islam, M.R., Rashmi, W., Mekhilef, S., Wadi, A., Solar energy harvesting with the application of nanotechnology. Renew. Sustain Energy Rev. 26 (2013), 837–852.