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Abstract  
A new analytical mathematical model is developed, describing a cooled photovoltaic-
thermoelectric hybrid system. The thermoelectric material is a nanocomposite where the model 
takes into account size-dependent non-local thermoelectric properties from an extended 
thermodynamic point of view. The photovoltaic device powers also the cooling system. The 
model determines first the optimum thickness of the photovoltaic device, then studies the 
influence of several size-related parameters on the thermoelectric efficiency (also related to the 
figure of merit) and finally, coupled to a cooling device, the overall efficiency. For the 
photovoltaic part, the model is applied to two materials, mono-crystalline and poly-crystalline 
silicon. The thermoelectric part of the model is applied to an n-leg nanocomposite made out of 
Sb2Te3 nanoparticles in a Bi2Te3 matrix and of a p-leg nanocomposite made out of Bi2Se3 
nanoparticles in a Bi2Te3 matrix. An optimal total photovoltaic device size has been found to 
be around 127 µm and 1.25 µm for the mono- and poly-crystalline silicon, respectively, leading 
to efficiencies up to 20 %, depending on photovoltaic recombination characteristics. With the 
cooling device, the overall efficiency was increased by up to an additional 10 % (an increase of 
almost 50 %), leading to overall efficiencies around 25 %.  
 
Key words: Photovoltaic power output, Thermoelectric element, Cooled hybrid system, 
Nanocomposite, Extended irreversible thermodynamics 
 
Nomenclature 
Latin script 
퐵  Auger recombination coefficient 
푐   Velocity of light 
푐 ,   Heat capacity 
퐶  Specific heat capacity 
CL  Cooling device 
푑   Nanoparticle size 
퐷   Characteristic diffusion coefficient of minority carrier i  
푒   Elementary charge  
퐸   Electric field 
퐸   Energy of a physical entity i 
퐺  Photovoltaic generation rate 
 
ℎ  Planck constant 
ℎ   Heat transfer coefficient between thermoelectric element and cooling device 
ℎ   Heat transfer coefficient at light side of photovoltaic device 
퐻  Heat generation 
푰   Electric current density flux  



2 
 

퐼 .   Incident photon energy per surface per wavelength 
푱   Entropy flux 
푘  Wavenumber 
푘   Boltzmann constant 
퐾푛  Knudsen number 
푙   Correlation length of order i 
퐿  Thermoelectric element length 
퐿   Length of contact between thermoelectric element and cooling device 
퐿   Lorentz constant 
퐿   Characteristic diffusion length of minority carrier i   
푛  Electron carrier concentration 
푛   Equilibrium carrier concentration 
푁   Acceptor dopant concentration 
푁   Density of states for the conduction band 
푁   Donor dopant concentration 
푁   Density of states for the valence band 
푝  Hole carrier concentration 
푃   Power needed for cooling device 
푃   Electric power 
PV  Photovoltaic device 
PVTE  Photovoltaic-thermoelectric hybrid device 
PVTECL Photovoltaic-thermoelectric-cooling hybrid device 
푃푟  Prandtl number 
풒                     Heat flux 
푄  Heat supply to thermoelectric element 
푸( )  Heat flux of order i 
풓  Spatial variable in Fourier transformation 
푟   Nanoparticle radius 
푅   Thermal boundary resistance coefficient 
푅   Recombination rate with 푖 = 푝,푛 
푅푒  Reynolds number 
푠  Entropy function 
푆   Seebeck coefficient 
푆 .   Standard number of incident photons per surface per wavelength 
푆   Surface recombination velocity 
푡   Time 
푇   Temperature 
TE  Thermoelectric element 
푢   Internal energy 
푣  Velocity 
푣   Velocity of cooling fluid 
푉  Electric potential 
푽()  Space of state variables between the parentheses 
푉   Built-in voltage 
푊   Width of cooling device 
푊   Thickness of p (푖 = 푝) and n-sides (푖 = 푛) of the photovoltaic device 
푦  Space coordinate 
z  Space coordinate 
푍푇  Figure of merit 
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Greek script 
훼  Absorption coefficient of the photovoltaic material 
훼   Thermal boundary resistance number (푖 = 푝ℎ, 푒) 
훾   Phenomenological constant related to relaxation times of order i  
Γ    Phenomenological constant related to correlation lengths of order i 
훿  Photovoltaic device thickness 
휀   Vaccuum permittivity 
휀   Relative permittivity 
휂   Efficiency (푖 = 푝푣, 푡푒,푝푣푡푒, 푐, 푡표푡) 
휆  Thermal conductivity 
Λ  Mean free path 
휇   Dynamic viscosity of the cooling fluid 
휇   Mobility of minority carrier i 
Π  Peltier coefficient 
휌  Density 
휚  Density of electric charge 
휎   Entropy production 
휏  Relaxation time 
휑  Volume fraction 
휒    Phenomenological constant related to transport coefficient of order i 
 
Subscripts 
0  Reference or equilibrium 
ℎ  Hot side of the thermoelectric element 
ℎ푝  Photons with energy higher than bandgap one 
퐴  Auger 
퐴푢푔  Auger 
퐼  Current density 
퐿  Light-generated 
푆푅퐻  Shockley-Read-Hall 
푇  Total 
푎푚푏  Ambient 
푏  Bulk 
푐  Cooling device or cold side of the thermoelectric element 
푐표푙푙  Collision 
푑  Depletion region 
푑표푝  Dopant 
푒  Electron 
푒푛푣  Environment (might be equal to ambient, but not necessarily) 
푔  Band gap 
푗  Joule heating 
푙푝  Photons with energy lower than bandgap one 
푚푎푥  Maximum 
푚푖푛  Minimum 
푛  Electron carrier 
표푝푡  Optimum 
푝  Hole carrier 
푝ℎ  Phonon 
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푝ℎ표푡표푛 Photon energy   
푝푣  Photovoltaic device 
푝푣푡푒  Photovoltaic-thermoelectric hybrid 
푟푒푓  Reference 
푠  Solar 
푠푐  Short-circuit 
푠푓  Surface recombination 
푡  Time derivative 
푡푒  Thermoelectric element 
푡표푡  Total 
 
Superscripts 
푚  Matrix bulk phase 
푝  Nanoparticle phase 
 
Accents on top of character 
∙  Time derivative 
−  Renomarlization 
^  Fourier transform 
 
 
1. Introduction 
Developments in renewable energy seek to alleviate the global energy crisis and reduce its 
impact on the environment. One way is to use solar energy. By means of photovoltaic (PV) 
solar cells, photonic energy is mainly converted into electricity and waste heat. PV cells have 
relatively low conversion efficiency, because they can only utilize part of the incident solar 
energy due to its given bandgap, and require often hybrid configurations [1]. One way to 
increase the efficiency of PV cells is using thermal management by means of heat sinks [2]. 
Otherwise, the waste heat can be used in order to be converted to more electricity via 
thermoelectric devices (TE) [3-6]. As a common PV cell converts a large amount of solar 
irradiant energy into heat, a hybrid PV cell and TE device (PVTE) may be a prospective way 
to improve the overall efficiency of solar energy [7]. One form of PVTE systems uses the so-
called spectrum splitting concentrating system, where the photons with an energy out of the PV 
working waveband are incident to the TE devices, generating thereby electricity via the 
thermoelectric effect [8-10]. This system is complex and the heat produced from the PV is still 
not used. Connecting the TE device directly at the dark side of the PV cell is simpler and 
theoretically all thermal energy can be used by the TE device [11], of which the efficiency can 
be even increased by cooling the TE device [7, 12]. It is the latter hybrid system that we consider 
in this work. As the efficiency in TE devices are proportional (though not necessarily linearly) 
on mainly the temperature difference across the device and the figure of merit, both are to be 
increased. The temperature difference stems from the operating system, while the figure of 
merit depends on material properties. For this purpose, we propose to use a nanocomposite TE 
device, so that the figure of merit can be considerably increased, even doubled [5, 6]. The 
thermoelectric transport properties are derived by means of a new extended irreversible 
thermodynamic (EIT) model [5, 13, 14]. 
The optimization of the overall efficiency of cooled PVTE systems is quite complicated and 
many works have investigated this mostly by experiments [15-18] or by numerical methods [7, 
8, 9], to mention a few. Hereby, it appeared that working at nanoscale lengths the efficiency 
could be increased [16]. Analytical models have also been developed, focusing sometimes on 
optical and electrical modeling [17], but at the cost of simplified physical phenomena [15, 17, 
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18]. We intend to develop an analytical model that is easy to use, but still capture complex 
coupled optic, thermal and electric phenomena that are present in cooled PVTE systems with 
nanocomposite materials. Such a model can also be used as support for understanding the 
mechanisms responsible for the performance of photovoltaic and thermoelectric devices.  
As for the PV cell, the model takes into account the thickness-dependence of the generation 
rate, the surface recombination velocity of electron and hole carriers (and indirectly passivation 
of dangling bonds at the cell’s surface), and several recombination mechanisms (SRH, Auger 
and surface). As for the TE device, the model takes into account, the nanoparticle size, both 
phonon and electron scattering in both the nanoparticles and the bulk matrix, the nanoparticle 
volume fraction. In order to maximize the thermoelectric efficiency, not only should the figure 
of merit be increased by the introduction of nanoparticles [6], but the temperature difference 
across it should also be optimized by means of a cooling (CL) device right under the TE device. 
By means of overall thermal modelling, it is the purpose to find optimal conditions for the 
PVTECL hybrid system. The photovoltaic power, thermoelectric efficiency and overall 
efficiency are studied as function of several parameters discussed in this paper. Fig. 1 shows a 
schematic representation of one cell unit of the hybrid system. The photovoltaic device is at the 
illuminated part on top of the system. Right under it, there is the thermoelectric device, 
consisting of an n-and p-leg. The hybrid system is cooled by means of a sun-energy powered 
heat sink. 
 

 
Fig. 1: Schematic representation of a cell unit of the cooled photovoltaic-thermoelectric hybrid 
system. 
 
The paper is set as follows. Section 2 treats the thermoelectric model, detailing on 
nanocomposite thermoelectric transport properties. Section 3 treats the EIT model used for 
nanoscale transport. Section 4 presents the photovoltaic model dealing with opto-electric 
phenomena, followed by a heat management analysis in Section 5. Section 6 presents a 
discussion of the material properties and operating conditions. The results are presented in 
Section 7, concluding in Section 8. 
 
2. Nanostructured thermoelectric model 
2.1 Thermoelectric efficiency 
Nanostructured materials can be used in different forms. We are interested here in 
nanocomposites. Nanocomposites are generally made out of a homogeneous matrix in which 
nanoparticles are dispersed. For nanoparticles with characteristic lengths of the same order of 
magnitude or smaller than the phonon and electron mean free paths, the Fourier theory, based 
on the classical approach of thermodynamics, is not able to predict the thermal interactions in 
the nanoparticles as well as between the nanoparticle and the bulk material. Therefore, we 
propose to investigate the problem of heat conduction in nanostructured thermoelectric 
materials by a more sophisticated thermodynamic formalism, namely Extended Irreversible 
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Thermodynamics (EIT) [5, 13, 14]. In this approach, the heat flux is elevated to the status of 
independent variable at the same footing as the temperature. The total heat flux	풒 is assumed to 
be the sum of a phonon contribution 풒풑풉 and an electric one 풒풆 [6], which are due to the phonon 
and electron motion through the material: 
 
풒 = 풒풆 + 풒풑풉.          (1) 
 
Note that by convention the bold font indicates a vector or higher order tensors of the concerned 
variable, while scalars are written in normal font. In the presence of an electric field and without 
local heat supply, the partial energy balances for the phonons and the electrons are 
 

+ ∇ ∙ 풒풑풉 = 0,          (2) 

+ ∇ ∙ 풒풆 = 푰 ∙ 푬,           (3) 
 
with 푢 , 푢 , 푬 and 푰 are the phonon internal energy, electron internal energy, the electric field 
and the electric current density, respectively. The total energy balance is then, in the absence of 
a magnetic field, given by 
 

+ ∇ ∙ 풒 = 푰 ∙ 푬,           (4) 
 
with  
 
푢 = 푢 + 푢 ,           (5) 
 
which also implies 퐶 = 퐶 + 퐶 , used later on, 퐶 being the specific (at constant volume) heat 
capacity. The continuity law for electric charge is 
 

+ ∇ ∙ 푰 = 0,           (6) 
 
with 휚  the density of electric charge. These equations give us now the evolution of 푢 , 푢 and 
휚 , with the corresponding fluxes 풒풑풉, 풒풆 and 푰. The basic principles of EIT allow postulating 
additional evolution equations for these fluxes (who are now considered as independent 
variables) as [6] 
 
휏 풒풑풉 + 풒풑풉 = −휆 ∇푇 + Λ ∇ 풒풑풉,       (7a) 

휏 풒풆 + 풒풆 = −(휆 + SΠ휎 )∇푇 + Λ ∇ 풒풆 + Π휎 푬,     (7b) 

휏 푰 + 푰 = 휎 (푬 − S∇푇) + Λ ∇ 푰,        (7c) 
 
where 휏, Λ, Π, S, λ and 휎 are the relaxation time, mean free path, the Peltier coefficient, the 
Seebeck coefficient, the thermal conductivity and the electric conductivity, respectively, 푇 the 
temperature, and the subscripts 푝ℎ and 푒 standing for phonon and electron, respectively. It 
should be noted that in Eq. (7a), the phonon transport is assumed to be dominated by normal 
phonon scattering, where Umklapp scattering is neglected [19]. The second term at the right-
hand side stands for the non-locality. We suppose that the system is in quasi-stationarity, so that 
energy balances become 
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∇ ∙ 풒풑풉 = 0,           (8a) 
∇ ∙ 풒풆 = 푬 ∙ 푰,           (8b) 
∇ ∙ 푰 = 0           (8c) 
 
Using Eqs. (8), Eqs. (7) become with quasi-stationarity  
 
풒풑풉 = −휆 ∇푇            (9a) 
풒풆 = −휆 ∇푇		 + (푬− 푆∇푇)Π휎          (9b) 
푰 = 푬휎 − S휎 ∇푇           (9c) 
 
From the above we can deduce that  
 
푬 = 푰 + S∇푇            (10) 
 
Inserting (10) in (9b), we find for a one-dimensional system (having only scalar values) and 
boundary conditions 푇(푧 = 0) = 푇  and 푇(푧 = 퐿) = 푇   (with ∆푇 = 푇 − 푇 ): 
 
푞 = 휆 ∆              (11a) 

푞 = 휆 ∆ + Π퐼           (11b) 
 
Note by convention that the temperature gradient and electric field have the same direction, 
which is opposite to the one of the temperature difference, heat and current density fluxes. The 
thermoelectric efficiency is given by  
 
휂 = ̇             (12) 
 
The electric power output is given by 
 
푃 = 푰 ∙ ∫ 푬푑푦 = 퐼∆푇푆 − 퐼 퐿휎         (13) 
 
The total heat supplied, averaged over the thermoelectric element’s length is given by 
 
푄̇ = ∫ 풒푑푦 = 휆 ∆ + 휆 ∆ + Π퐼       (14) 
 
Defining 휆 ≡ 휆 + 휆 , the efficiency is finally given by 
 
휂 = ∆

∆            (15) 

 
The thermoelectric efficiency depends on an unknown current density, created by a temperature 
gradient. Defining Π ≡ TS (recalling that material properties are taken at 푇 = T ), it is easy 
to see that an optimal current density, taking 휕휂 /휕퐼 = 0, can be found to be 
 
퐼 = ∆ √ ,          (16) 
 
so that a maximum thermoelectric efficiency can be found 
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휂 , = ∆

,

√ ,         (17) 

 
with 
 
푍푇 = 푇

/
           (18) 

 
the thermoelectric figure of merit. It should here kept in mind that 푇 ,  is the upper temperature 
of the thermoelectric device, which will be derived from the bottom temperature of the 
photovoltaic device 푇 ,  in Section 5.2. As such, we define ∆푇 ≡ 푇 , − 푇 , , where 푇 ,  is 
the bottom temperature of the thermoelectric device. It can be seen that 휂 ,  can be increased 
by increasing 푍푇. In principle, these equations are developed and valid for both the n- and p-
leg of the thermoelectric element. We can define a thermoelectric efficiency for both legs 
altogether by defining in Eqs. (17)-(18) 
  
푆 = 푆 − 푆             (19) 

= , ,

,
+ , ,

,
         (20) 

 
where the subscripts 푝 and 푛 denote the p- and n-legs of the thermoelectric element, 
respectively. Since the thermoelectric legs are made out of nanocomposites, the aforementioned 
material properties are dependent on the matrix and nanoparticle ones.  
 
2.2 Material properties for the nanocomposite legs 
We present the development of the material properties for a certain nanocomposite leg 푖, with 
푖 = 푝, 푛. Since this is a heterogeneous medium, we use the well-known Effective Medium 
Approach (EMA) [20-22], which provides an analytical expression that homogenizes the 
nanocomposite medium. This approach, based on Maxwell’s relation [20, 21] revisited by [22] 
and adapted here for our purposes, states [5] for the thermal conductivity  
 

휆 , = 휆 ,
, , , , , ,

, , , , , ,
.          (21) 

 
This expression is valid for both the phonons (푐 = 푝ℎ) and electrons (푐 = 푒). The analogy of 
the electron contribution with that of the phonon one is generally proposed throughout this 
development. From a physical point of view, the phonons and the electrons are considered as 
gas-like constituents, which behave as such in that they “flow” through the material lattice. We 
assume thusly that they also follow the same thermodynamic principles. The superscripts 푚 
and 푝 concern the matrix and nanoparticle properties, 휑 the nanoparticle volume fraction and 
훼 is a dimensionless parameter describing the nanoparticle-matrix interaction: 
 
훼 , = 푅 , 휆 , /푟 .              (22) 
 
Here, 푟  is the nanoparticle radius (푑 = 2푟  is the nanoparticle diameter) and the quantity 푅 is 
the thermal boundary resistance coefficient given by  
   
푅 , = 4/퐶 , 푣 , + 4/퐶 , 푣 , ,          (23) 
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where 퐶푐 is the phonon specific heat and 푣푐 the phonon group velocity. The phonon thermal 
conductivity of the bulk matrix is given by the classical Boltzmann phonon expression: 
 
휆 , = 퐶 , 푣 , Λ , | ,         (24) 
 
where 푇  is the reference temperature, say the room temperature. Within the matrix, the 
phonons experience phonon-phonon interactions and the mean free path is given by the 
Matthiessen rule: 
 

,
=

, ,
+

, ,
.             (25)  

 
with Λ , ,  designating the mean free path in the bulk matrix and Λ , ,  the supplementary 
contribution due to the interactions at the particle-matrix interface given by  
 
Λ푐,푖,푐표푙푙
푚 =

4푟푝
3휑

,            (26) 
 
The electric conductivity can be found through the electron thermal conductivity  
 
휎 , = ,             (27) 
 
where 퐿  is the Lorentz number and 푇 the absolute temperature. We note also that  
 
휎 , = 휆 , /퐿 푇            (28) 
 
The Lorentz number is determined by 
 

퐿 = ,           (29) 
 
where 푘  is Boltzmann’s constant and 푒  the elementary charge. The Seebeck coefficient relates 
a temperature gradient with an electric current, albeit not directly. Indeed, the systems (7) and 
(9) show nicely that the thermal and electric conductivities precede the temperature gradient, 
while the Seebeck coefficient only precedes the temperature gradient in the form of a product 
with the electric conductivity. This motivates writing 
 

푆 휎 , = 푆 휎 ,
, ( ) , ( ) , ,

, ( ) , ( ) , ,
.    (30) 

 
where 푆  is the bulk value of the Seebeck coefficient of the matrix. The overall Seebeck 
coefficient of one leg can then be easily obtained a posteriori, by defining  
 
푆 = 푆 휎 , /휎 , ,            (31) 
 
The thermoelectric model is complete when we find an expression for the phonon and electron 
thermoelectric conductivity and the Seebeck coefficient of the nanoparticles, i.e. 휆푝ℎ,푖

푝 , 휆푒,푖
푝  and 

푆푖
푝. In order to find these, we have to take into account size effects at nanoscale. For this, we 
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use EIT. The non-local effects that are introduced by EIT (in the framework of this paper) for 
the phonon contribution, apply also for the electron contribution of the thermal conductivity. 
As the non-local effects also apply for the electron contribution, the electrical conductivity can 
be treated in the same way in the same framework as well as the product of the Seebeck 
coefficient and the electric conductivity. The phonon thermal conductivity at nanoscale is given 
by  
 
휆 , = 휆 ,

, 	푓(퐾푛 ),           (32) 
 
wherein 휆 ,

,  is the value of the phonon/electron thermal conductivity for the bulk material from 
which the nanoparticle is made of, the 0 indicating a reference value:  
 
휆 ,

, = 퐶 , 푣 , Λ , |          (33) 
 
The Knudsen number is given by  
 
퐾푛 = Λ , /푟            (34) 
 
We note that  
 
휎 , = 휆 , /퐿 푇          (35) 
 
We have shown in a previous work [6] that  
 
푆 ~ 휎 ,            (36) 
 
The only quantity still to be found is 푓(퐾푛 ) a correction factor, taking into account the 
dimension of the nanoparticles. We derive this correction factor by means of EIT in the 
following section. 
 
3 Nanoscale material properties proposed by EIT 
Let us consider for the purposes of this work a rigid and isotropic body (with constant density), 
which is crossed by a heat flux 풒 and an electric flux 푰. Then, the relevant conserved variables 
are the internal energy 푢 (or the temperature 푇) and the electric charge density 휚 , whereas the 
energy flux (here the heat flux vector 풒) and the electric flux (here the electric current density 
푰) are the non-conserved flux variables so that the space of state variables is 푽 = (푢, 휚푒,풒, 푰). 
However, in more complex materials like in nanomaterials, it is necessary to introduce fluxes 
of higher order, as will be shown later on. The corner stone of EIT is to assume the existence 
of an entropy function 푠(푽) [13], depending on the whole set 푽 of variables: here 푠 =
푠(푢, 휚푒	,풒, 푰), or in terms of time derivatives, 
 
푑 푠 푢, 휚푒,풒, 푰 = 푑 푢 +

풒
. 푑 풒 +

휚푒
푑 휚푒 +

푰
.푑 푰                                 (37)  

 
wherein 푢 and 푠 are measured per unit volume and a dot stands for the scalar product. The 
symbol 푑 	 designates the time derivative which is indifferently the material or the partial time 
derivative as the system is, respectively, in motion or at rest. Here, 푠 is assumed to be a concave 
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function of the variables in order to guarantee stability of the equilibrium state obeying at the 
same time a general time-evolution equation of the form 
 
푑 푠 = −∇ ∙ 푱 + 휎   (휎 ≥ 0),         (38)  
  
whose rate of production per unit volume 휎  (in short, the entropy production) is positive 
definite to satisfy the second principle of thermodynamics, while the quantity 푱  is the entropy 
flux. Let us define the local non-equilibrium temperature by 푇 (푢) = 휕푠/휕푢 (fundamental 
thermodynamic relation at constant volume) and define 휕푠/휕휚 = −푇 휇 , where 휇  is the 
chemical potential of electrons. Let us also select the simplified constitutive equations for 
휕푠/휕풒 and 휕푠/휕푰 as given by 휕푠/휕풒 = − 훾풒

풒풒 + 훾풒푰푰  and 휕푠/휕푰 = − 훾푰
풒풒 + 훾푰푰푰 , 

respectively. There, 훾풒(푇) and 훾푰(푇) are material coefficients depending generally on the 
temperature, where the subscript indicates to what the entropy is derived. These material 
coefficients are positive definite so that the property that s is maximum at equilibrium is met. 
With these conditions, expression (37), referred to as the Gibbs equation, can be written as  
 
푑 푠(푢, 휚 ,풒, 푰) = 푇 푑 푢 − 훾풒,

풒 풒 + 훾풒,
푰 푰 . 푑 풒 − 휇 푇 푑 휚 − 훾푰,

풒 풒 + 훾푰,
푰 푰 . 푑 푰,     (39)  

 
wherein 훾 ,

풊  (푖 = 풒, 푰 and independently 푗 = 풒, 푰) are phenomenological crossing coefficients 
identified later on. However, expression (39) does not account for non-local effects. These non-
local effects are elegantly introduced in the framework of EIT by appealing to a hierarchy of 
fluxes 푸( ), 푸( ), ..., 푸( ) with 푸( ) identical to the heat flux vector 풒, 푸( ) (a tensor of rank 
two) is the flux of 풒, 푸( )  the flux of 푸( ) and so on. The same is done for the electric current 
density, introducing the fluxes 푰( ) (푰 ≡ 푰( )), 푰( ), ..., 푰( ). Up to the nth-order flux, the Gibbs 
equation generalizing relation (39) becomes 
 
푑 푠 푢, 휚 ,풒,푸( ), … ,푸( ), 푰, 푰( ), . . . , 푰( ) = 푇 푑 푢 − 휇 푇 푑 휚 − 훾풒,

풒 풒 + 훾풒,
푰 푰 ∙ 푑 풒 −

훾풒,
풒 푸( ) + 훾풒,

푰 푰( ) ⨂푑 푸( ) −⋯− 훾풒,
풒 푸( ) + 훾풒,

푰 푰( ) ⨂푑 푸( ) − 훾푰,
풒 풒 + 훾푰,

푰 푰 ∙ 푑 푰 −
훾푰,
풒 푸( ) + 훾푰,

푰 푰( ) ⨂푑 푰( ) −⋯− 훾푰,
풒 푸(풏) + 훾푰,

푰 푰( ) ⨂푑 푰( ),              (40) 
 
wherein the symbol ⨂ denotes the inner product of the corresponding tensors. The subsequent 
step is the formulation of the entropy flux 푱풔. It is natural to expect that it is not simply given 
by the classical expression (푇 	풒 − 휇 푇 푰), but that it will depend on higher order fluxes in 
a similar way as for the generalized Gibbs equation, so that it is assumed that 
 
푱 = 푇 풒 − 휇 푇 푰 + Γ풒, 푸(ퟐ) ∙ 풒 + ⋯+ Γ풒, 푸( )⨂푸( ) − Γ푰, 푰(ퟐ) ∙ 푰 − ⋯−
Γ푰, 푰(ퟐ) ∙ 푰,                            (41) 
 
where the Γ’s are material coefficients in analogy to the 훾’s. The next step is the derivation of 
the rate of entropy production per unit volume σs which, referring to (38), is given by 
 
     휎 = 푑 푠 + ∇ ∙ 푱 ≥ ퟎ.      (42) 
 
After substituting in (42) the expressions of 푑 푠 and 푱풔 from (40) and (41), respectively, and 
eliminating 푑 푢 via the energy conservation law for rigid heat conductors (푑 푢 = −∇ ∙ 풒 + 푰 ∙
푬) and 푑 휚  via the continuity law for electric charge (푑 휚 = −∇ ∙ 푰), one obtains   
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휎 = − −∇푇 + 훾풒,
풒 푑 풒 + 훾푰,

풒 푑 푰 − Γ풒, ∇ ∙ 푸(ퟐ) ∙ 풒 − −푇 푬 + ∇휇 푇 + 훾풒,
푰 푑 풒 +

훾푰,
푰 푑 푰 − Γ푰, ∇ ∙ 푸(ퟐ) ∙ 푰 − ⋯−∑ 푸( )⨂ 훾풒,

풒 푑 푸( ) + 훾푰,
풒 푑 푰( ) − Γ풒, ∇ ∙ 푸( ) −

Γ풒, ∇푸( ) −⋯−∑ 푰( )⨂ 훾풒,
푰 푑 푸( ) + 훾푰,

푰 푑 푰( ) − Γ , ∇ ∙ 푰( ) −
Γ푰, ∇푰( ) ≥ 0          (43)  
  
The expression for 휎  is a bilinear relationship in the fluxes 풒 and I and the subsequent higher 
order of fluxes 푸( ) and 푰( ). The quantities represented by the terms between the parentheses 
are usually called the thermodynamic forces 푿 . The simplest way to guarantee the positiveness 
of the entropy production 휎  is to assume a linear flux-force relation of the forms 푸( ) = 훽풒푿풒 
and 푰( ) = 훽푰푿푰 (푛 = 1,2,3, … ,푁), where the 훽 ’s are phenomenological coefficients. As such, 
we obtain 
 
∇푇 − 훾풒,

풒 푑 풒− 훾푰,
풒 푑 푰+ Γ풒, ∇ ∙ 푸( ) = 휒풒,1풒,                     (44a) 

푇 푬 − ∇휇 푇 − 훾풒,
푰 푑 풒− 훾푰,

푰 푑 푰+ Γ푰, ∇ ∙ 푰( ) = 휒푰,1푰      (44b) 
 
Γ , ∇푸(푛−1) − 훾풒,

풒 푑 푸( ) − 훾푰,
풒 푑 푰( ) + Γ풒, ∇ ∙ 푸

(푛+1) = 휒풒,푛푸
(푛), (푛 = 2,3, … ,푁),  (45a) 

Γ , ∇푰 − 훾풒,
푰 푑 푸( ) − 훾푰,

푰 푑 푰( ) + Γ푰 , ∇ ∙ 푰
(푛+1) = 휒푰,푛푰

( ),    (푛 = 2,3, … ,푁), (45b)
        
compatible with positive entropy production at the condition that 휒풒, ≥ 0, 휒 , ≥ 0, 휒풒, ≥ 0 
and 휒푰, ≥ 0. In (44)-(45), 푑  stands for the partial time derivative, if we assume the material 
to be at rest. Also, 훾 , Γ  and 휒  are phenomenological coefficients related to the relaxation 
times, correlation lengths and transport coefficients, respectively. Eq. (44a) reduces to the well-
known Cattaneo’s law [23] when the terms ∇ ∙ 푸( )and 푑 푰 are omitted. Furthermore, if the 
term 푑 풒 is neglected, we obtain Fourier’s law. Note that Eq. (44b) also reduces to a Cattaneo-
like law when one omits ∇ ∙ 푰( ) and 푑 풒. Ohm’s law is obtained when furthermore the term 
푑 푰 is neglected. In order to simplify the following procedure, we focus on only the heat flux. 
We now consider an infinite number of flux variables (푁 → ∞) and apply the spatial Fourier 
transform  
 
풒(풌, 푡) = ∫ 풒(풓, 푡)푒 풌⋅풓 푑풓           (46) 
 
to Eqs. (44a) and (45a) neglecting for simplification the cross terms 푑 푰( ) (푛 = 1,2,3, …), with 
풒 the Fourier transform of 풒, 풓 the spatial variable, 푡 the time and 풌 the wavenumber vector. 
This procedure results into obtaining the following time-evolution equation for the heat flux: 
 
휏̅(풌)휕 풒(풌, 푡) + 풒(풌, 푡) = −푖풌휆 , (풌)푇(풌, 푡)   (47) 
 
where 휏̅(풌) = 훾 /휇  designates a renormalized relaxation time depending generally on 풌. 
휆 , (풌) is given by the continued-fraction for the 풌–dependent effective thermal conductivity: 
 

휆 , (풌) = ,
,

풌ퟐ

풌ퟐ

ퟏ
풌ퟐ
ퟏ ⋯

,     (48) 
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with 휆 ,
,  the classical bulk thermal conductivity, given by Eq. (33), independent of the 

dimension of the system, 푙  is the correlation length of order n defined by 푙 = 훾 /(휇 휇 ). 
Here, it is assumed that the relaxation times 휏  (푛 > 1) corresponding to higher order fluxes 
are negligible with respect to 휏 , which is a hypothesis generally admitted in kinetic theories. 
In the present problem, there is only one dimension (the nanoparticle radius), so that it is natural 
to define 푘 ≡ 2휋/푟 . The correlation lengths selected as 푙 = 푎 푙 , with 푎 = 푛 /(4푛 −
1) and 푙 identified as the mean free path independently of the order of approximation. This is a 
rather natural choice for phonons as shown by Dreyer and Struchtrup [24], which we, as 
mentioned earlier, apply for electrons as well. With these results in mind, the continued fraction 
(48) reduces, within the asymptotic limit 푁 → ∞ (see for mathematical formulation Ref. [25]) 
to the following expression for 휆 , : 
 

휆 , = 	 ,
,

( )
− 1 ,                (49a) 

 
with 퐾푛  given by Eq. (34). The same can be found for the electrical conductivity in analogy with 
the thermal conductivity. Hereby, the correlation lengths are only associated with the mean free 
path of the electrons. The final result is 
 

휎 , = 	 ,
,

( )
− 1 ,               (49b) 

 
with 퐾푛  given by Eq. (34) with 푐 = 푒. We should note that the relation between (49a) and 
(49b) is still valid by Eq. (35). 
 
4 Opto-electric model for the photovoltaic device 
4.1 Basic considerations 
For the photovoltaic device we use the semiconductor equations for electron transport 
 
∇ ∙ (휀∇푉) = −푒 (푝 − 푛 + 푁 −푁 )       (50) 
∇ ∙ 푰 = 푒 (퐺 − 푅)          (51) 
∇ ∙ 푰 = −푒 (퐺 − 푅)          (52) 
푰 = −휇 (푒 푝∇푉 + 푘 푇∇푝)         (53) 
푰 = −휇 (푒 푛∇푉 − 푘 푇∇푛)        (54) 
 
with 휀 the dielectric constant of the semiconductor (휀 ≡ 휀 휀 , with 휀  the relative permittivity 
with respect to the vacuum permittivity 휀 ), 푉 the electric potential, 푒  the electron charge, 푝 
and 푛 the hole and electron carrier concentrations, respectively, 푁  and 푁  the donor and 
acceptor doping concentrations, respectively, 푰  and 푰  the hole and electron current densities, 
respectively, 퐺 and 푅 the generation and recombination rates, respectively. The Eqs. (50)-(54) 
represent Poisson’s equation relating the electrical potential to the space charge density, the 
continuity equations for holes and electrons and the hole and electron current densities, 
respectively. Note that in Poisson’s equation ∇ ∙ (휀∇푉) = ∇ ∙ (휀퐄), where 퐄 is the electric field.  
 
The generation rate 퐺 is given by 
 
퐺 = ∫ 훼(푘)푒 ( ) 푆 . (푘)d푘/        (55) 
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where ℎ is Planck’s constant, 푐 the speed of light, 퐸  the band-gap energy, 훼 the absorption 
coefficient, 푘 the photon wavelength, 푧 the space coordinate and 푆 .  is defined as the 
standard number of incident photons per surface per wavelength: 푆 . (푘) ≡ 퐼 . /
퐸 (푘), where 퐸  is the photon energy. 퐼 .  is defined as the incident photon energy 
per surface per wavelength, where the subscript stands for the air mass number. In (55), 푘  
is the minimum photon wavenlength for solar irradiance, being 400 nm [26]. Note that 푘 , 
needed later on, is the maximum one, being 1050 nm [26]. The particularity of 푆 . (푘) is that 
it depends on the wavelength of the different “light spectra”, i.e. blue light has a lower 
wavelength than for instance red light and has thus higher photon energy. Therefore, we have 
to integrate over the whole spectrum from 푘  to ℎ푐/퐸  in Eq. (55). We define 퐼 . ≡
휕푃 /휕푘, where 푃  is the solar energy per surface for a given wavelength. There is no formulation 
for 퐼 . . We, therefore, take an average integrated value over the photon wavelengths: 
〈퐼 . 〉 ≡ ∫ 퐼 . 푑푘

/ = ∫ 푑푘/ ≈ 푃 . Typically, 푃  is of the order of magnitude of 
1000 W/m2. The absorption coefficient is also averaged over the wavelength: 〈훼〉 ≡
∫ 훼(푘)푑푘/ . We also take an averaged value for the thickness dependence of 퐺,  
 
〈훼푒 〉 =           (56) 
 
We average also the photon energy 퐸 =  
 

〈퐸 〉 = 푙푛         (57) 

 
Finally, we have  
 

퐺 ≈ 푃          (58) 

 
This form has also been suggested in [27]. Finally, note that thusly we do not take 퐺 as a given 
constant value, often done in analytical developments, but dependent on the device’s thickness. 
The recombination rate 푅 is given by 
 
푅 = 푅 + 푅 + 푔푅          (59) 
 
where  
 
푅 =

( ) ( )
         (60a) 

푅 = 퐵 푝 + 퐵 푛 (푝푛 − 푛 )        (60b) 

푅 =
( ) ( )

        (60c) 

 
and in (59)-(60c), we used 
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푔 ≡             (61) 

푛 = 푁 푁 푒           (62) 
 
In (59)-(62), 푅 , 푅  and 푅  are the so-called Shockley-Read-Hall (SRH), Auger 
recombination and surface recombination rates, respectively, 휏  and 휏  the minority hole and 
electron SRH lifetimes, 푊  and 푊  the p- and n-sides of the quasi-neutral layers (explained 
later in the paper), 푆  and 푆  the minority hole and electron surface recombination velocities, 
푛  the intrinsic carrier concentration in the recombination sites, 퐵  and 퐵  the hole and electron 
Auger recombination coefficients, respectively, 휏  and 휏  the hole and electron surface 
recombination lifetimes, respectively, and 푁  and 푁  the effective density of states for the 
conduction and valence bands, respectively. Note that in (59) and (61), 푔 is a proportionality 
factor, being defined here as the ratio of a bulk (equilibrium) carrier concentration (푁 =
푝, 푛,푛 ) and a surface (equilibrium) carrier concentration (푁 = 푝 ,푛 , 푛 ). Radiative 
recombination is neglected [28]. 
In order to solve for all these equations, we need to make first a difference between the depletion 
region and the quasi-neutral regions. We will start with solving for the depletion region in 
Section 4.2. In Section 4.3 we treat the quasi-neutral regions. The findings are synthesized in 
Section 4.4 to obtain the photovoltaic efficiency. 
 
4.2 Depletion region 
We make certain assumptions in order to solve the equations analytically: 

- Depletion approximation: the electric field is confined to the junction region (depletion 
region) and there is none in the quasi-neutral regions; 

- The number of free carriers in the depletion region is small, assuming that the electric 
field sweeps them out of the depletion region quickly. This means that we do not 
consider the transport equation for the carrier concentrations and that we can neglect 
recombination. We consider generation in the depletion region;  

- Abrupt or step doping profile, where all dopants are ionized: the acceptor and donor 
doping concentrations are constant in their respective regions; 

- One-dimensional system; 
- We define 푧 = 0 as the point of the p-n junction, 푧 = −푧  the p-side of the depletion 

region and 푧 = 푧  the n-side of the depletion region; 
- Constant electric permittivity at each side of the p-n junction. 

 
The system to solve becomes  
 

=
푁 ,												− 푧 ≤ 푧 < 0	

− 푁 ,															0 ≤ 푧 < 푧
        (63) 

= 푒 퐺           (64) 

= −푒 퐺           (65) 
 
The subscripts of the relative permittivity denote that it concerns either the p-side or the n-side 
of the depletion region. So we take into account the difference in permittivity of the two 
materials, which is not often done. Since we have assumed that there is no electric field outside 
the depletion region, we have as boundary conditions = 0 at 푧 = −푧  and 푧 = 푧 . One is 
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usually interested in the potential difference across the junction. We define here the voltage on 
the p-side as 푉  (applied voltage in case of a diode or induced voltage in case of a solar cell), at 
푧 = −푧 . At the n-p interface the potential should be equal on both sides, so that 푉 = 푉  at 푧 =
0 (where the subscripts 푝 and 푛 indicate the p- and n-sides of the interface, respectively). The 
electric potential is then given by 
 

푉(푧) =
푉 + 푧 + 푧 ,																								− 푧 ≤ 푧 < 0	

푉 + 푧 + 푧 − 푧,												0 ≤ 푧 < 푧
    (66) 

 
It is now necessary to know 푧  and 푧 . At the interface 푧 = 0, we assume displacement vector 
(푫 = 휀푬) continuity. So 휀 = 휀  at 푧 = 0. This gives 
 
푁 푧 = 푁 푧            (67) 
 
The maximum voltage across the junction is at 푧 = 푧  being 
 

푉(푧 ) = 푉 + +         (68) 

 
This voltage is also equal to the built-in voltage (which can be found from the difference in 
Fermi-levels between the p- and n-side materials) across the p-n junction,	푉 , so that   
 
 

푉 = 푉 + +          (69) 

 
with  
 

푉 = 푙푛           (70) 

 
We can finally find that  
 

푧 = ( )          (71) 

 

푧 = ( )          (72) 

 
The total width of the depletion region is then  
 
 

푊 = 푧 + 푧 = ( ) +        (73) 
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which shows that the depletion region depends on the material properties of both the p- and n-
side ones as well as on an applied/induced voltage. Note also that 
 

푧 = 푊           (74) 

푧 = 푊           (75) 

 
Now, under solar illumination, there is also generation in the depletion region, as shown in Eqs. 
(64)-(65). Integrating between the depletion borders gives 퐼 (푧 = 푧 ) − 퐼 푧 = −푧 =
−푒 퐶 푧 + 퐶 푧 , so that we define a surplus hole current density through the depletion 
region ∆퐼 , : 
 
∆퐼 , = 푒 퐶 푧 + 퐶 푧          (76) 
 
Note that the same can be done for the electron current density ∆퐼 ,  giving  
 
∆퐼 , = −푒 퐶 푧 + 퐶 푧         (77) 
 
It can be easily seen that the net current density through the depletion region is constant.  
 
4.3 Quasi-neutral regions 
We continue now with the quasi-neutral regions. Having said that there is no electrical field in 
the quasi-neutral regions, we can omit Poisson’s equation from this development (the electric 
potential in the p- and n-sides of the quasi-neutral regions are constant and equal to the ones at 
the respective depletion region borders). The drift terms in the transport equations also becomes 
zero. The system to solve becomes 
 

= 푒 (퐺 − 푅)          (78) 

= −푒 (퐺 − 푅)          (79) 

퐼 = −휇 푘 푇           (80) 

퐼 = 휇 푘 푇           (81) 
 
We can rewrite this set of equations as   
 
푘 푇 + (퐺 − 푅) = 0         (82) 

푘 푇 + (퐺 − 푅) = 0         (83) 
 
For the generation rate, we have established an averaged expression, depending now only on 
the total thickness of the device so that we define 퐺 ≡ 퐶 . We define also an average generation 
rate for the n-side 
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퐶 =          (84) 

 
We can also define an average generation rate for the p-side, but with the assumption that only 
a fraction 푒  remains, so that 
 

퐶 =          (85) 

 
As for 푅, we make the assumption of low injection, where it is assumed that the majority  carrier 
concentrations are unperturbed throughout the quasi-neutral regions. This means that 푝 ≫ 푛  
and 푝 = 푝  in the p-side material (the subscript 푝 denoting that it concerns the p-side), 푝  
being the equilibrium majority hole concentration, which is equal to the intrinsic hole 
concentration plus the doping one. In case of doping, the intrinsic carrier concentration is often 
to be neglected. For the n-side material, we can in analogy say that 푛 ≫ 푝  and 푛 = 푛 . 
Note that in equilibrium the product of the majority and minority carrier concentrations is a 
constant, being mathematically expressed by the so-called Mass Action Law 
 
푝 푛 = 푛            (86) 
 
with subscript 푖 being either 푝 or 푛, depending whether it concerns the p- or the n-side, and 푛  
is the equilibrium carrier concentration. Therefore, at equilibrium, carrier concentrations are 
given by  
 
푝 = 푁  & 푛 = 푛 , /푁     (where 푛 , ≡ 푛 | ≡ )   (87) 
 
for the majority and minority carriers in the p-side, respectively, and  
 
푛 = 푁  & 푝 = 푛 , /푁    (where 푛 , ≡ 푛 | ≡ )   (88) 
 
for the majority and minority carriers in the n-side, respectively. Due to carrier doping, we also 
assume that 푛 ≫ 푛  and 푛 ≫ 푛 . Furthermore, we assume that the lifetimes and surface 
recombination velocities do not vary dramatically in the p- and n-side materials, such that 
휏푛 ≫ 휏푛  in the p-side material and 휏푛 ≫ 휏푛  in the n-side material. Using Eqs. (59)-(62), 
the recombination rates for the minority carrier concentrations 푛 − 푛  on the p-side and 
(푝 − 푝 ) on the n-side, respectively, become 
 
푅 = 푛 − 푛 + + = 푛 − 푛 퐶      (89) 
 
푅 = (푝 − 푝 ) + + = (푝 − 푝 )퐶      (90) 

 
휏 ≡             (91a) 

휏 ≡ ,            (91b) 
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휏 = +           (91c) 

휏 = +           (91d) 

 
Here 1/퐶  and 1/퐶  are the effective recombination lifetimes of the minority electrons and 
holes, respectively. Very important here is to note that the electron and hole Auger lifetimes are 
obtained under the assumption that the dopant concentration is much higher than the minority 
ones [29]. If not, the Auger lifetimes should not be calculated as in (91a) or (91b) but can be 
obtained elsewhere, e.g. in [30, 31] for silicon, for instance. The expression for the surface 
recombination lifetime is given in [32], assuming identical surfaces and splitting the expression 

for the p- and n-sides. The set of equations to solve are now (noting that =  and 

= ( ))  
 

푘 푇 − 퐶 푛 − 푛 + 퐶 = 0      (92) 

푘 푇 ( ) − 퐶 (푝 − 푝 ) + 퐶 = 0      (93) 
 
for the minority carrier concentrations 푛 − 푛  on the p-side of the quasi-neutral region and 
(푝 − 푝 ) minority carriers on the n-side of the quasi-neutral region, respectively. Let us 

furthermore define the characteristic diffusion lengths 퐿 ≡  and 퐿 ≡  and the 

characteristic diffusion coefficients 퐷 ≡  and 퐷 ≡  of the electrons (in the p-side) 
and the holes (in the n-side), respectively. We recall that 푧 = −푧  and 푧 = 푧  at the edge of, 
respectively, the p- and n-side of the depletion region and 푧 → − 푊 + 푧  and 푧 → (푊 + 푧 ) 
for the surface of the device for the p- and n-sides, respectively, where 푊  and 푊  are the 
thickness of the p-side and n-side quasi-neutral regions, respectively. On the p-side we have the 
following boundary conditions: 
 

퐷 = 푆 푛 − 푛    at 푧 → − 푊 + 푧     (94) 

푛 − 푛 = 푛 푒 − 푛     at 푧 = −푧     (95) 
 
On the n-side we have the following boundary conditions: 
 
−퐷 ( ) = 푆 (푝 − 푝 )   at 푧 → (푊 + 푧 )   (96) 

(푝 − 푝 ) = 푝 푒 − 푝     at 푧 = 푧     (97) 
 
 
In (95) and (97), 푉  is the applied voltage or in the case of an illuminated solar cell the open-
circuit voltage, here denoted by 푉 ≡ ∆푉. Also 푆  and 푆  are the minority electron and hole 
surface recombination velocities, respectively. We find the following minority carrier densities 
in the p-side and the n-side, respectively 
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푛 [푧] = 푛 +

∆

	 ( )

( )
−

( )
    (98) 

 
 

푝 [푧] = 푝 +

∆

	

−

    (99) 

 
The majority carrier currents are equal to zero in each of the respective quasi-neutral regions. 
The minority carrier currents can be calculated using the one-dimensional variants of equations 
(80)-(81) giving for the p- and n-side, respectively, 
 

퐼 = 푒

∆

	 ( )

( )
−

( )
    (100) 

퐼 =

푒

∆

	

            (101) 
 
Having determined the minority current densities and the depletion region properties, we have 
enough information to proceed with the photovoltaic efficiency. 
 
4.4 Photovoltaic efficiency 
We make the assumption that the total current through the solar cell is constant: 
 

= + = −푒 (퐺 − 푅 ) + 푒 퐺 − 푅 = 0     (102) 
 
This is assumption can be made by stating that each electron generates a hole and each 
recombining electron uses one up: 퐺 = 퐺  and 푅 = 푅 . This means that the total number of 



21 
 

electrons and holes do not change in a semiconductor and therefore the total current also does 
not change. This also suggests that if one finds the total current anywhere in the device it will 
be the same everywhere in it. Conveniently, we can choose either sides of the depletion region. 
We choose to calculate the total current at the n-side, i.e. 푧 = 푧 . As stated earlier, both current 
densities across the depletion region (the edges for mathematical purposes included) are 
constant if it were not for the generation in the depletion region. So, the electron current density 
at the n-side of the depletion region (푧 = 푧 ) equals the minority electron current density at the 
p-side of the depletion region (푧 = −푧 ) plus the one calculated due to generation in the 
depletion region (whether it be positive or negative): 퐼 (푧 = 푧 ) = 퐼 푧 = −푧 + ∆퐼 , . The 
total current density can then be found by simply adding the hole current density at the n-side 
퐼 (푧 = 푧 ). Therefore, we can find the total current to be 퐼 = 퐼 (푧 = 푧 ) + 퐼 푧 = −푧 +
∆퐼 , . Recalling that 푝 = 푛 /푁  and 푛 = 푛 /푁 , we find finally 
 

퐼 = 푒
∆

− 1 푒 , + 푒 , − 푒 퐶 푧 +

퐶 푧 + 퐶 퐿 + 퐶 퐿      (103) 

 
We can typically define  
 

퐼 ≡ 푒 , + 푒 , ,    (104)  

퐼 ≡ 푒 퐶 푧 + 퐶 푧 + 퐶 퐿 + 퐶 퐿 ,   (105) 

 
standing for the dark saturation current (without solar illumination, corresponding to the diode 
current) and the short-circuit current, respectively. It should be noted that the signs are rather 
based on conventions. When speaking about solar cells, expression (103) is often inversed in 
sign. Making the remark that in the case of solar cells, the short-circuit current is also called the 
light-generated current, i.e. 퐼 ≡ 퐼 , we find the final expression for the total current 
 

퐼 = 퐼 − 퐼 푒
∆

− 1          (106) 

 
It can be seen here that the total current density, for a specific set of p- and n-materials with a 
specific thickness depends on both the built-in and the induced voltage difference, 푉  and ∆푉. 
The first is material dependent and the second depends on the operating conditions. Therefore, 
퐼 = 퐼 (∆푉). The photovoltaic efficiency 휂  is then defined by the ratio of electric power 푃  
and the input solar power 푃  
 
휂 = = ∆ 	 (∆ )          (107) 
 
It is well known that an increasing ∆푉 decreases 퐼  and can therefore expect a certain maximum 
in 휂 . Therefore, we can define a maximum photovoltaic efficiency as 
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휂 , = (∆ (∆ ))         (108) 
 
The optimal (subscript 표푝푡) electric potential ∆푉  is the one for with Eq. (108) holds, so that 
the corresponding optimal current density will be 
 
퐼 , = (∆ (∆ ))

∆
          (109) 

 
We can then also define  
 
휂 , = ∆ ,           (110) 
 
The maximum total efficiency of the photothermoelectric efficiency 휂  is then given by 
 
휂 , = 1 − 휂 , 휂 , + 휂 ,       (111) 
 
We have developed models for both the thermoelectric and photovoltaic mechanism. Having 
said, that it is aimed to increase the photovoltaic efficiency by a cooled thermoelectric device, 
it is necessary to perform an analysis on the heat management of the entire cooled photovoltaic-
thermoelectric hybrid system in the next Section. 
 
5 Analysis of the heat management of the cooled hybrid system 
Before we can analyze the performance of the hybrid system, an analysis on the heat 
management should be performed. Let us recall for clarity that wherever an entity (for instance, 
the temperature) is used in both the photovoltaic and thermoelectric model, it will be 
distinguished by subscripts: the subscript 푡푒 denotes the thermoelectric device and 푝푣 the 
photovoltaic one. We can divide the heat flows in three parts. The first part is the net heat flow 
at the illuminated photovoltaic surface. The second part is the heat transfer from the 
photovoltaic device to the thermoelectric element. The third part is the heat removal from the 
thermoelectric element by the cooling device (which is powered by the photovoltaic device).  
 
5.1 Heat generation in the photovoltaic device 
The heat generation rate 퐻 is given by the sum of the energy transferred to the lattice by lattice 
thermalization, 퐻 , the energy of photons whose energy is lower than the band-gap energy, 
퐻  and the joule heat, 퐻 :  
 
퐻 = 퐻 + 퐻 + 퐻           (112) 
 
with  
 
퐻 = 퐺 ∫ 퐸 − 퐸 d푘/                  (113a) 

퐻 = 퐺 ∫ 퐸 d푘/                   (113b) 

퐻 = −∇푉 ∙ 푰 + 푰 + 퐸 푅                 (113c) 
 
where 퐺 is given by (84) and (85) for the n- and p-side, respectively. The total heat generation 
rate is then expressed by 
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퐻 = 퐶 + ∆ 퐼 , + 퐼 ,         (114) 
 
where the latter term is the joule heating, where we assume a linear relation for the voltage 
gradient with 훿 = 훿 + 훿  the total photovoltaic device thickness. The first term in (114) is 
given by 
 
퐶 = 퐶 + 퐶                   (115a) 

퐶 = 퐶 퐸 푘 − ℎ푐 + ln + 퐸 푅 ,                (115b) 

퐶 = 퐶 퐸 푘 − ℎ푐 + ln + 퐸 푅 ,               (115c) 

 
In (115a), we have taken into account the fact that a thicker layer will generate more heat. 
Moreover, we distinguish between the heat generated in the p- and n-sides of the photovoltaic 
device, the differences being given by the respective thicknesses 훿  and 훿 , the respective band 
gap energies 퐸  and 퐸 , the respective generation rates 퐶  and 퐶 , and the respective 
recombination rates 푅 ,  and 푅 , . Note that the subscripts of the recombination rates are 
different now. On one hand, it concerns the recombination of electrons or holes (subscript 푛 or 
푝 for the recombination rate) in the p- or n-side (subscript 푝 or 푛 for the heat generation). On 
the other hand, we only consider the bulk recombination rate as far as it concerns the heat 
generation. For this, we take Eqs. (89) and (90), where we fill in Eqs. (98) and (99) and take 
then the average value of the carrier concentrations over the respective quasi-neutral region. In 
doing so, we do not consider the contribution of the surface recombination in 퐶  (see Eq. (89)) 
en 퐶  (see Eq. (90)), respectively. This results finally into 
 
 
푅 , ≈ ∫ 푛 − 푛 퐶 푑푧 = + ×

∆

	

( )
+ + ×

( )
    (116) 

 
푅 , ≈ ∫ (푝 − 푝 )퐶 푑푧 = + ×

∆

	

+ + ×

    (117) 
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where ∆푉 = ∆푉 ,  corresponding to the one where Eq. (108) holds. The last term of (114) is 
the so-called Joule heating, obtained at optimal conditions, defined by (108)-(109).  
 
5.2 Temperature profiles 
The quasi-stationary energy balance equation in the photovoltaic device is given by 
 
∇ ∙ 휆 ∇푇 + 퐻 = 0         (118) 
 
where 휆  is the thermal conductivity of the photovoltaic device. We define an overall thermal 
conductivity of the photovoltaic device: 
 
휆 =           (119) 

 
where the subscripts 휆  and 휆  denote the thermal conductivities of the n- and p-side 
materials of the photovoltaic device and 훿  and 훿  the n- and p-sides’ total thicknesses, 
respectively. At the upper surface of the photovoltaic device, we assume that the only heat 
transfer mechanisms are solar radiation 푃  (increasing the surface temperature) and heat 
convection (decreasing the surface temperature). The boundary condition at the upper surface 
is then 
 
−휆 = 푃 − ℎ (T(푦 = 0)− T )       (120) 

 
with 푦 = 0 at the illuminated upper surface and 푦 = 훿 at the dark side. We choose in this section 
to use a different symbol for the space coordinate just for the sake of clarity and convenience.  
In (120), ℎ  stands for the convective heat transfer coefficient towards the ambient air with 
temperature T . Since ℎ  is variable due to external factors, we will take a typical mean value 
of ℎ = 10 Wm-2K-1 [33]. We can see from (11a) and (11b) that under the assumptions of this 
work the heat flux in the thermoelectric device is considered to be constant. Assuming heat flux 
continuity through the photovoltaic-thermoelectric interface, we have the following boundary 
condition at 푦 = 훿: 
 
 −휆 = 푞 ,                       (121a) 

푞 , = 푞 ,                    (121b) 
 
with 푞 ,  the optimal heat flux from the sum of (11a) and (11b), wherein the material 
properties are taken at 푇  and the optimal thermoelectric current density 퐼 ,  is used from 
Eq. (16). Using (18), the total heat flux in the thermoelectric element can also be written as 
 
푞 , = 휆 ,

, , √1 + 푍푇        (122) 
 
Let us make some short reflections on (122). If the Peltier effect was neglected, Eq. (122) would 
reduce to the simple Fourier law. For bulk materials, 푍푇 is a positive constant. For 
nanocomposites, the case in this paper, 푍푇 depends on the nanoparticle radius and volume 
fraction via the size-dependent material properties. Recalling that the thermoelectric device 
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consists of a p- and an n-leg, the total effective thermal conductivity is derived by means of the 
Matthiesen rule uniquely for the purposes of the present section: 
 

휆 , =
, ,

+
, ,

        (123) 

 
Having calculated the current through the photovoltaic device, we can through Eqs. (118) and 
(119)-(123) calculate the maximum generated heat. The n-side layer is often much smaller than 
the p-side layer, so that we can neglect the effect of the former’s thickness on the temperature 
variation. We solve Eq. (118) at optimal conditions and find the following temperature profile 
in the photovoltaic device 
 

푇 , (푧) = 푇 + , − ,      (124) 

 
The temperature at the photovoltaic-thermoelectric interface is thus 
 
푇 , = 푇(푦 = 훿) = 푇 + , + ,      (125) 

 
5.3 Operating temperatures 
In order to perform all the calculations concerning the photovoltaic device, we have seen in 
Sections 2 to 4 that there is a temperature dependence. It is not the purpose here to study this 
temperature dependence, but in order to have realistic values, we should evaluate the 
calculations for the photovoltaic device at a certain realistic operating temperature, valid 
wherever no high (푇 ) or low (푇 ) temperature is explicitly specified. We define this operating 
temperature 푇 ≡ 푇 ,  as an approximation of (125), valid for 푃 ≫ 푞 ,  and 푃 ≫ 퐻훿: 
 
푇 , = 푇 +           (126) 
 
Concerning the thermoelectric device, we assume that it operates under an average temperature 
between the photovoltaic one and the low cooling temperature: 
 
푇 , = ,           (127) 
 
As far as concerns material properties, we assume they are evaluated at a constant ambient 
temperature. We assume temperature continuity through the photovoltaic-thermoelectric 
interface, so that we define 푇 , ≡ 푇 , . Using a simple Newton’s law of cooling we can state 
that at quasi-stationary conditions, the heat (assumed to be constant) through the thermoelectric 
device is equal to  
 
푞 , = ℎ 푇 , − 푇          (128) 
 
where ℎ  is the convective heat transfer coefficient towards the cooling device (e.g. air fin, heat 
pipe) and 푇  the temperature far away from the contact surface (possibly, but not necessarily 
equal to 푇 ). The heat transfer coefficient towards the cooling air, ℎ , can be found [7] by 
 
ℎ =            (129) 
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푁푢 = 0.664푅푒 / 푃푟 /          (130) 
푅푒 =            (131) 

푃푟 = ,            (132) 
 
where 푁푢, 푅푒, 푃푟, 휆 , 휌 , 푣 , 휇 , 푐 ,  and	퐿  are the dimensionless Nusselt, Reynolds and 
Prandtl numbers, the thermal conductivity, density, velocity, dynamic viscosity, heat capacity 
of the cooling fluid and the characteristic length (typically the length of the hybrid system) at 
which the cooling takes place, respectively. The power flux 푃  needed for cooling depends on 
the flow mean velocity 푣  and the pressure drop Δ푃 to overcome: 
 
푃 = 푣 Δ푃           (133) 
 
where the pressure drop is obtained via the standard Hagen-Poiseuille equation for laminar flow 
between two horizontal plates: 
 
Δ푃 =            (134) 
 
where 푊  is the depth of the cooling channel. 
 
Rearranging Eqs. (122), (125) and (128) gives finally the expressions for 푇 ,  and 푇 , :  
 

푇 , =
( )

, √ ( )
+

, √ ( ) ( )

, √ ( )
     (135) 

 
푇 , = , , √

, √
        (136) 

 
It is interesting to note that the 푁푢 number in Eq. (130) is linked to the 퐾푛 number via Eqs. 
(128), (129) and (136). If the cooling area would be a nano-channel, the correlation in Eq. (130) 
would not be valid and would also be dependent explicitly on the 퐾푛 number [34]. 
 
5.4 Total efficiency of the hybrid system 
It is the idea to extract the power flux for the cooling device directly from the electricity 
produced from the photovoltaic device, which causes a loss of efficiency equal to  
 
휂 =            (137) 
 
The net efficiency of the total hybrid system is then 
 
휂 = 휂 , + 1 − 휂 , 휂 , − 휂       (138) 
 
The net efficiency in this work is considered to be influenced by four parameters: the 
photovoltaic thickness 훿, the thermoelectric thickness 퐿, the nanoparticle radius in the 
thermoelectric material 푟  and its volume fraction 휑, and the cooling velocity 푣 . The material 
and operating values are given and discussed in Section 6. 
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6 Material properties and operating conditions 
6.1 Material properties for the thermoelectric materials 
The p-leg of the thermoelectric element is composed out of p-type Antimony Telluride (p-
Sb2Te3) nanoparticles dispersed in a matrix of p-type Bismuth Telluride (p-Bi2Te3). The n-leg 
is composed out of n-type Bismuth Selenide (n-Bi2Se3) nanoparticles dispersed in a matrix of 
n-type Bismuth Telluride (n-Bi2Te3).  
We start with p-Bi2Te3. The electron (퐶 , 푣  and Λ , ) and phonon (퐶 , 푣  and Λ , ) material 
properties are given by [5,6] and the calculated thermal conductivities correspond with the ones 
in [35]. As for the Seebeck coefficient we use the value from [5]: 188 µV/K. The electric 
conductivity can be found by (24) and (27), so that the electric conductivity is found to be 
3.28×105 -1m-1.  
As for p-type Antimony Telluride (Sb2Te3), the electric conductivity is 4.76×105 -1m-1 [36]. 
Via (27), we can calculate the electron thermal conductivity to be 3.49 W/Km. Given that the 
total thermal conductivity is 4.2 W/Km [37], we can deduce that the phonon thermal 
conductivity is 0.71 W/Km. The Seebeck coefficient and the phonon velocity are 79 µV/K and 
2900 m/s, respectively [37]. The total specific heat capacity is 1.34 MJ/m3K [38, 39]. For the 
phonon mean free path, it can be found that it is 3 nm [40]. We can then via (24) calculate that 
the phonon contribution of the specific heat is equal to 0.245 MJ/m3K. Assuming that the total 
specific heat is the sum of the phonon and electron contributions [5], the electron contribution 
of the specific heat is then equal to 1.09 MJ/m3K. The electron mean free path is 1 nm [41]. 
This makes via (24) the thermal electron velocity equaling 9562 m/s. 
We assume that for the n-type Bi2Te3 at room temperature the phonon and electron mean free 
paths as well as the total specific heats remain the same as for the p-type materials. As for the 
n-type Bi2Te3, the total thermal conductivity is 1.27 W/Km, while the electric conductivity 
equals 0.96×105 -1m-1 [42]. The latter results via (27) into an electron thermal conductivity of 
0.70 W/Km and according to the definition under Eq. (14) a phonon thermal conductivity of 
0.57 W/Km. The phonon velocity is given to be 1750 m/s [43]. This gives via (24) a phonon 
specific heat of 0.324 MJ/m3K and, knowing that the total specific heat is 1.2 MJ/m3K [5, 6], 
thus an electron specific heat of 0.876 MJ/m3K. The thermal electron velocity is via (24) 
therefore 2634 m/s. The Seebeck coefficient is -241 µV/K [3].  
It remains to evaluate the properties of n-type Bismuth Selenide (Bi2Se3). The electric 
conductivity is 2.4×105 -1m-1 [3], which gives via (27) an electron thermal conductivity of 
1.76 W/Km. Knowing from [3] that the phonon thermal conductivity is 0.66 W/Km, the total 
thermal conductivity is thus 2.42 W/Km. The phonon velocity is 2900 m/s [44]. For the phonon 
specific heat, we have obtained the value from [45, 46] being 0.255 MJ/m3K. We can deduce 
via (24) that the phonon mean free path is 2.7 nm. The total heat capacity being 1.33 MJ/m3K 
[3], we can calculate the electron heat capacity to be 1.08 MJ/m3K. The Seebeck coefficient is 
-50 µV/K [3]. The electron mean free path is said to be approximately 1 nm [47]. We can then 
via (24) finally calculate the electron velocity to be 4889 m/s. 
A resume of these properties are given in Table 1, where we indicate whether it concerns the 
nanoparticles (NP) or the matrix (M). 
 
 
 
Table 1: Electron and phonon material properties of p-Bi2Te3 and n-Bi2Te3, p-Sb2Te3 and n-
Bi2Se3 at T = 300K. 
Material Role Electron Phonon Electrical  

 퐶  
[MJ/m3K] 

푣  
[km/s] 

Λ ,  
[nm] 

퐶  
[MJ/m3K] 

푣  
[km/s] 

Λ ,  
[nm] 

휎  푆  
[µV/K]  [k-1m-1] 
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p-Sb2Te3 NP 1.09 9.65 1.0 0.245 2.9 3.0 476 79 
p-Bi2Te3 M 1.01 7.83 0.91 0.19 8.43 3.0 328 188 
n-Bi2Se3 NP 1.08 4.89 1.0 0.255 2.9 2.7 250 -50 
n-Bi2Te3 M 0.876 2.63 0.91 0.324 1.75 3.0 96 -241 

 
6.2 Material properties for the photovoltaic materials 
We consider in this work two types of photovoltaic materials. One is monocrystalline Silicon 
(c-Si) and thin-film polycrystalline Silicon (p-Si, not to be confused with the p-side of a solar 
cell, which is considered in both the Si materials). The electron and hole properties of c-Si and 
p-Si are shown in Table 2. Typical doping concentrations are taken from [48] and presented in 
Table 3. The hole Auger lifetime is extracted from Auger lifetime studies [29, 49] as 휏 =
1/(퐵 푁 ) and 휏 = 1/(퐵 푁 ), where 푁 = 푁 ,푁  is the net dopant concentration in 
the p- and n-sides, respectively. This expression is only valid for net dopant concentrations 
푁 > 5 ∗ 10  m-3, which is here only the case for the n-side of both the Si solar cells (see 
doping concentrations in Table 3). For the p-side, we extract the value from [30, 31] to be 휏 =
8 ∗ 10 	s. The Auger recombination coefficients 퐵  and 퐵  are taken from [29]. The effective 
densities of state are taken from [7]. All these mentioned values are taken to be the same for c-
Si and p-Si. The differences are in the SRH lifetimes, the electron and hole mobilities and the 
absorption coefficient. The SRH lifetimes 휏  and 휏  for p-Si are obtained from the Scharfetter 
relation [28], which represents them as a function of the total dopant concentration: 
 

휏 , =
휏 , ,

푁 + 푁
푁 , ,

 

 
The parameters for this relation are given in [28]. For 휏 , = 10  s, 휏 , = 3 ∗ 10 s, 
푁 , , = 10  m-3 and 훾 = 1, we obtain the SRH lifetimes given in Table 2. The SRH 
lifetimes for c-Si are extracted from [50]. The mobility’s for p-Si depend on the doping 
concentrations and this can well be approximated by [51, 52] 
 

휇 = 92 ∗ 10 +
1268 ∗ 10

1 + 푁 + 푁
1.3 ∗ 10

.  

휇 = 54.3 ∗ 10 +
406.9 ∗ 10

1 + 푁 + 푁
2.35 ∗ 10

.  

 
The mobility’s for c-Si are taken from [7]. The absorption coefficient for p-Si is much higher 
than for c-Si [53]. For the absorption coefficient, we have taken a value averaged over the whole 
considered wavelength spectrum following the example of a correlation given in [54]. 
 
Table 2: Electron and hole material properties of c-Si and p-Si thin film at T = 300 K. 

General material 
property 

Hole General material 
property 

Electron 

휏  [s] 3.6×10-10 휏  [s] 8.5×10-5 
퐵  [m6/s] 9.9×10-44 퐵  [m6/s] 2.8×10-43 
푁  [m-3] 1.04×1025 푁  [m-3] 2.8×1025 
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Specific material 
property 

c-Si p-Si Specific material 
property 

c-Si p-Si 

휇  [m2/Vs] 5×10-2 56.3×10-4 휇  [m2/Vs] 1×10-1 95.0×10-4 
휏  [s] 1×10-6 3×10-10 휏  [s] 1×10-6 1×10-9 

 
Other photon and carrier information is given in Table 3. Note that the permittivity 휀 is given 
as the relative one 휀  (in Table 3) multiplied by the vacuum one	휀 , i.e. 휀 = 휀 휀 . The thermal 
conductivity for monocrystalline silicon and polycrystalline silicon are taken from [55] and 
[56], respectively. 
 
Table 3: Other material properties of c-Si and p-Si thin film at T = 300K. 
Material property c-Si p-Si 

퐸  [eV] 1.12 1.12 
휀  [-] 11.8 11.7 
푁  [m-3] 1×1022 1×1022 
푁  [m-3] 1×1026 1×1026 
훼 [m-1] 4×103 2.5×105 

휆  [W/Km] 148 20 
 
Finally, it should be noted that although some properties of the considered materials in this 
paper have the same values in the n- and p-sides, they are formally different in the photovoltaic 
model in this paper. This is done so that the model remains generally applicable to other 
photovoltaic materials, where the n- and p-sides are made out of distinctly different materials. 
 
6.3 Other operating characteristics and general physical properties  
Table 4 presents the characteristics of the cooler and Table 5 presents some general physical 
constants used throughout this paper. 
 
Table 4: Cooler characteristics [7] 
Property Value 
ℎ  [W/Km2] 10 
푃  [W/m2] 1000 
휆  [W/Km] 0.0242 
퐿  [m] 0.025 
휌  [kg/m3] 1.2 
휇  [Pa s] 1.84×10-5 

푐 ,  [J/kgK] 1007 
푊  [m] 0.025 

 
Table 5: Physical constants at T = 300K. 
Physical 
constant 

푘   
[10-23 J/K] 

ℎ  
[10-34 Js] 

푒   
[10-19C] 

퐿  
[10-8 W] 

c  
[108 m/s] 

휀   
[10-12 C/Vm] 

Value 1.38 6.626 1.602 2.44 3.0 8.854 
 
Setting 푇 = 푇 = 300 K, we can deduce from Eqs. (126) and (127), the operating 
temperatures 푇 , = 400 K and 푇 , = 350 K. 
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7 Results 
7.1 Optimal thickness of the photovoltaic device 
First of all, we investigate the influence of the thickness of the photovoltaic device and the 
surface recombination velocity on the electric power. Note that the photovoltaic efficiency is 
this electric power output divided by the solar power input 푃 = 1000 W/m2. As for the surface 
recombination velocity, we assume that it is equal in n- and p-sides, although it is typically 
somewhat smaller in the n-side [57]. So, we take 푆 = 푆 = 푆 . Fig. 2 shows the photovoltaic 
power output as a function of the p-side thickness for four n-side thicknesses for c-Si, i.e. 훿 =
50 nm, 훿 = 250 nm, 훿 = 2 µm and 훿 = 100 µm. The same for p-Si is shown in Fig. 3. The 
훿  value of 50 nm appears to be the smallest manufacturable n-side thickness for the doping 
concentration used in this work [48]. The 훿  value of 100 µm is chosen for the reason that it is 
much larger than the characteristic diffusion lengths of both the Si solar cells. 
 
 

 

 
Fig. 2: Electric power 푃  of the c-Si as a function of 훿  for a range of recombination velocities 
푆  (10-1-105 m/s), with 푃 = 1000 W/m2 and several 훿 : (a) 50 nm, (b) 250 nm, (c) 2 µm and 
(d) 100 µm.   
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Fig. 3 Electric power 푃  of the p-Si as a function of 훿  for a range of recombination velocities 
푆  (10-1-105 m/s), with 푃 = 1000 W/m2 and several 훿 : (a) 50 nm, (b) 250 nm, (c) 2 µm and 
(d) 100 µm.   
 
The optimal p-side thickness for the c-Si varies from 100 to 200 µm, for recombination 
velocities ranging from 10-1 to 105 m/s, respectively, whatever the considered n-side 
thicknesses. Noting that, for this given range of surface recombination velocities, this velocity 
is of more importance in a thinner device than in a thicker one, it is understandable that the 
photovoltaic efficiency is more affected by the surface recombination velocity at smaller 
thicknesses.  In [57], it is said that the recombination velocity for an unprepared sample is of 
the order of 102 m/s. After passivation of dangling bonds by an HF/H2O, it was lowered to about 
~10 m/s [57]. We can see anyway that not much increase in the electric power output is observed 
in Figs. 2 and 3 when decreasing further the surface recombination velocity, so that we use in 
the following the typical value of  푆 = 10 m/s. The corresponding optimal p-side thickness for 
c-Si is 125 µm and for p-Si it is around 1 µm. These values also correspond to typical industrial 
values found in the literature [58,59], where it is confirmed that p-Si only needs a thickness of 
the order of 1 µm and c-Si two orders more, due to the formers larger absorption coefficient 
[53]. The maximum electric power that defines these optimal thicknesses needs some reflection. 
Two opposing factors [60] govern the increase or decrease of the electric output: the short-
circuit current and the open-circuit voltage (see Eqs. (104)-(106)). Physically, these factors are 
influenced by the photonic energy absorption and the recombination rate, as is detailed in 
Section 4. Although a too thin cell will have much less bulk recombination (see Eqs. (89), (90), 
(98) and (99)), it will still not absorb enough photonic energy (see Eq. (58)), which will cause 
the electric output to decrease for thinner cells. At too thick cells, much larger than the 
characteristic diffusion length (see text under Eq. (93)), bulk recombination becomes 
predominant, even though a maximum of photonic energy is absorbed, and the electric output 
decreases as well. It is then understandable that a maximum can be found for intermediary 
thicknesses, as can be seen in Figs. 2 and 3. The difference in these intermediary thicknesses 
for c-Si and p-Si lies in the difference of the aforementioned characteristic diffusion lengths, 
determined by material properties. Figs. 2(d) and 3(d) shows that for large enough n-side 
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thicknesses, the electric power (even at optimal p-side thickness) decreases. Fig. 4 shows the 
electric power as a function of the n-side thickness. 
 

 
Fig. 4: Electric power 푃  of the c-Si (a) and p-Si (b) as a function of the n-side thickness 훿  
for a range of recombination velocities 푆  (10-1, 10 and 103 m/s) and corresponding optimal p-
side thicknesses 훿  (100, 125 and 200 µm), for 푃 = 1000 W/m2. 
 
Fig. 4 shows indeed that for sufficiently large n-side thicknesses the electric power drops 
towards zero. The electric power starts already to drop considerably for n-side thicknesses 
comparable to the p-side ones. The n-side being heavily doped, the recombination rate is much 
higher than in the p-side for the same thickness [48]. Therefore, the photo-generated free 
carriers recombine in the n-side, even before they can significantly be of any use in the p-side. 
This reduces considerably the photonic energy absorption in the p-side, which reduces the 
electric power. It is then understandable to reduce as much as possible the n-side thickness. For 
intermediate n-side thicknesses, however, a small maximum is visible in Fig. 4. We have 
discussed the effect of too large n-side thicknesses. At too small n-side thicknesses, the 
recombination and photonic energy absorption will be insignificant with respect to those in the 
p-side. At intermediate n-side thicknesses, the photo-generation in the n-side is significantly 
large enough to generate more electricity, but small enough to limit recombination and, 
therefore, also insignificant enough to interfere with the photo-generation in the p-side. In the 
foregoing, we proceed with the optimal n- and p-side thicknesses of 훿 = 2 µm and 훿 = 125 
µm for c-Si and 훿 = 250 nm and 훿 = 1 µm for p-Si, respectively.  
 
7.2 Influence of nanocomposite characteristics on thermoelectric efficiency 
Fig. 5 shows the thermoelectric efficiency as a function of the nanoparticle volume fraction for 
different nanoparticle radii and thermoelement lengths, where the heat comes from the c-Si 
photovoltaic cell. Fig. 6 shows the same results, but using the p-Si photovoltaic cell instead. 
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Fig. 5: Thermoelectric efficiency as a function of the nanoparticle volume fraction for different 
nanoparticle sizes (푑 =1, 2, 4, 10 and 20 nm), a cooling velocity of 푣 = 10 m/s and 
thermoelectric element lengths of (a) 1 mm, (b) 1 cm, (c) 10 cm and (d) 1 m. The heat comes 
from the photovoltaic c-Si cell.  
 
 

  

  
Fig. 6: Thermoelectric efficiency as a function of the nanoparticle volume fraction for different 
nanoparticle sizes (푑 =1, 2, 4, 10 and 20 nm), a cooling velocity of 푣 = 10 m/s and 
thermoelectric element lengths of (a) 1 mm, (b) 1 cm, (c) 10 cm and (d) 1 m. The heat comes 
from the photovoltaic p-Si cell.  
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First of all, we can see a clear increase of the thermoelectric efficiency with increasing volume 
fraction, decreasing nanoparticle size and increasing thermoelectric element length. A 
decreasing thermoelectric nanoparticle size means that, especially if the size is of the order of 
magnitude of the mean free paths of phonons and electrons, the phonons and electrons are 
scattered more within the material [6]. As such the heat transport (due to phonon and electron 
transport as Eqs. (7a)-(7b) show) is slower and more electricity can be generated, increasing 
the figure of merit and thusly the thermoelectric efficiency. It is interesting to note that the 
figure of merit can be increased to almost 2.5 for the materials considered in this work. As an 
example, the figure of merit of the thermoelectric nanocomposite considered in this work is put 
against the volume fraction for various nanoparticle sizes is shown in Fig. 7.  
 

 
Fig. 7: Figure of merit of the nanocomposite of Section 6.1 as a function of the volume fraction 
for various nanoparticle sizes (푑 =1, 2, 4, 10 and 20 nm). 
 
Obviously, a higher volume fraction will only amplify the scattering effect at smaller 
nanoparticle sizes. As it can be seen, the highest efficiency is obtained for a volume fraction 
around 0.7. Note that due to geometric limitations, assuming that the nanoparticles are spheres, 
the highest theoretical volume fraction is 휑 = 휋/√18. However, if the nanoparticle size is 
too large, the heat and electrical transport in the material is simply a function of the bulk values 
of the nanoparticle and matrix transports. The scattering effect will then be negligible (the 
Knudsen number tends to zero and Eq. (49) to the bulk value). As bulk values of the materials 
used for the nanoparticles in this work exhibit figures of merit lower than that of the matrix, a 
higher volume fraction will only decrease the thermoelectric efficiency. Fig. 7 shows indeed 
that for larger nanoparticle sizes, a higher volume fraction gives rise to a lower figure of merit. 
So, the effect of the volume fraction is not straightforward and depends on the nanoparticle size 
with respect to the mean free path, i.e. the Knudsen number. The length of the thermoelectric 
element influences the efficiency in that a longer element can absorb more heat and the 
temperature difference will be larger so that more electricity can be generated. Of course, from 
a theoretical point of view, an element’s length going mathematically to zero will reduce the 
temperature difference across the element to zero as well. As the element’s length increases, 
the efficiency will attain a maximum due to heat loss to the cooling device. This is shown in 
Fig. 8, where the thermoelectric efficiency is drawn against the thermoelectric element’s length, 
with a volume fraction of 0.7 and a nanoparticle size of 2 nm. For mathematical purposes, the 
range of thermoelectric lengths in Fig. 8 is extended beyond realistic limits.  
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Fig. 8: Thermoelectric efficiency as a function of the thermoelement length for different cooling 
velocities, a volume fraction 휑 = 0.7 and a nanoparticle size 푑 = 2 nm, where the heat comes 
from the photovoltaic c-Si cell (a) and p-Si cell (b). 
 
To appreciate the effect of the cooling velocity on the thermoelectric efficiency, we present the 
results in Fig. 8 for various cooling velocities as well. It can be seen that the cooling velocities 
influence considerably the thermoelectric efficiency. A higher velocity will increase the heat 
transfer coefficient and the temperature difference across the thermoelectric element, increasing 
thereby the efficiency. The results in Fig. 8 are shown with nanoparticle size of 2 nm. Smaller 
nanoparticle sizes will show even higher efficiencies. However, nanoparticles with sizes of the 
order of 1 nm and below begin to exhibit quantum confinement effects [61], not taken into 
account in the present model. Using a size of 1 nm is at the acceptable limit and deemed 
therefore still reasonable to present in this work. Nonetheless, to be at the safe side, we chose 
in Fig. 8 a nanoparticle size of 2 nm and will do so in the next subsection as well.  
 
7.3 Optimal hybrid opto-thermo-electric efficiency 
We have seen in the previous subsection that an optimal total photovoltaic device thickness is 
around 127 µm and 1.25 µm for c-Si and p-Si, respectively and that the highest, theoretically 
reasonable, thermoelectric efficiency is attained with a nanoparticle size of 2 nm and a volume 
fraction around 0.7. Choosing a thermoelectric element length of 10 cm (being practically 
reasonable [62] and close to maximum thermoelectric efficiency for higher cooling velocities), 
the results in the previous subsection suggest to increase the cooling velocity to a maximum. 
However, as the power for the cooling device is extracted directly from the electricity produced 
by the photovoltaic device, we can imagine that a too high cooling velocity will reduce the 
overall efficiency. It is therefore necessary to assess quantitatively the effect of the cooling 
velocity on the total efficiency. The results are shown in Fig. 9 for both the c-Si and p-Si 
photovoltaic devices connected to the thermoelectric element of the previous subsection. 
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Fig. 9: Total hybrid efficiency as a function of the cooling velocity compared to the photovoltaic 
one. Two photovoltaic cells are compared: c-Si (a) and p-Si (b). The thermoelectric element in 
the hybrid systems is the one from Section 7.2 with 휑 = 0.7, 푑 = 2 nm and 퐿 = 0.1 m.  
 
Fig. 9 shows that indeed a too high cooling velocity makes the overall efficiency drop towards 
zero. An optimum cooling velocity appears to be around 10 m/s for both hybrid systems, 
attaining overall efficiencies of almost 25 %.  
 
8 Conclusions 
This work presents a new analytical model describing the operation of a photovoltaic-
thermoelectric hybrid system assisted by a cooling device. The model is presented in three parts. 
The first part describes a thermoelectric model, where the material consists of nanoparticles 
embedded into a matrix. The thermoelectric element is composed out of an n-leg and a p-leg, 
made out of an n-type and p-type Bismuth Telluride matrix, respectively, with Antimony 
Telluride and Bismuth Selenide nanoparticles, respectively. The model in this work takes into 
account size-dependent thermoelectric properties, where non-local effects of heat transfer 
through phonons and electrons are important at nanoscales. These phenomena are extended to 
apply also for electric transfer as well as the Seebeck coefficient. The transport properties in 
the thermoelectric nanocomposite are derived in an original way from Extended Irreversible 
Thermodynamics. In the second part, a model is developed that describes the pn-junction in a 
photovoltaic cell, taking into account optical conversion to electricity, surface recombination 
effects and heat generation. Two photovoltaic materials are considered in this work: 
monocrystalline silicon (c-Si) and polycrystalline silicon (p-Si). The last part connects the two 
former ones with a cooling device (powered by electricity from the photovoltaic device) and 
deals with the heat management analysis of the hybrid system. It should be noted, however, that 
the photovoltaic model is also applicable to other materials that have typically a p-n junction 
(such as crystalline materials or inorganic materials of the III and IV groups). The 
thermoelectric model is also applicable to other types of nanocomposites. 
An optimal total photovoltaic device size, obtained from an analysis on the effect of both the 
n- and p-side thicknesses on the electric power output, has been found being around 127 µm 
and 1.25 µm for c-Si and p-Si, respectively, corresponding to typical values from the literature 
[58,59]. It has been shown that the thermoelectric efficiency is increased considerably for 
increasing volume fraction at the condition that the nanoparticle size is rather small, i.e. of the 
order smaller than 4 nm, which corresponds to Knudsen numbers of the order of 1 or higher. 
For larger nanoparticle sizes, the opposite effect is obtained. The enhancement of the 
thermoelectric efficiency is explained on one side by an increase of the figure of merit, due to 
scattering effects that decrease the heat and electric transport properties, and on the other side 
by an increase of the temperature difference across the thermoelectric device. The latter is 
attained by a higher cooling velocity (a higher heat transfer coefficient between the 
thermoelectric element and the cooling device), the results of this work showing that the choice 
of the photovoltaic device hardly influences the thermoelectric efficiency. A study of the overall 
efficiency shows that a cooling velocity around 10 m/s presents the highest overall efficiency, 
i.e. almost 25 %. Theoretically, if nanoparticle sizes and the surface recombination velocities 
could be lowered even further, overall efficiencies of almost 30 % could be attained.  
Finally, it can be said that it in this work it is shown that a rather comprehensive, but analytical 
model is able to describe electricity generation by both a photovoltaic device and a 
thermoelectric device. It is also useful for understanding the underlying mechanisms that can 
increase photovoltaic and/or photovoltaic-thermoelectric efficiencies, showing the interest of 
using nanotechnology for solar energy harvesting [63]. The present model has also shown how 
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the photovoltaic efficiency can be enhanced by a cooled thermoelectric device, what the 
limitations are and how further enhancement could be achieved.  
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