[1] Touzé, C., Amabili, M., Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. Journal of Sound and Vibration 298 (2006), 958–981.
[2] Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems. 1996, Springer, New York 10.1002/9783527617869.
[3] Peeters, M., Kerschen, G., Golinval, J., Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mechanical Systems and Signal Processing 25 (2011), 1227–1247.
[4] Renson, L., Gonzalez-Buelga, A., Barton, D.A.W., Neild, S.A., Robust identification of backbone curves using control-based continuation. Journal of Sound and Vibration 367 (2016), 145–158.
[5] Rosenberg, R.M., Normal modes of nonlinear dual-mode systems. Journal of Applied Mechanics 27 (1960), 263–268.
[6] Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M., Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D: Nonlinear Phenomena 204 (2005), 41–69.
[7] Shaw, S.W., Pierre, C., Normal modes for non-linear vibratory systems. Journal of Sound and Vibration 164 (1993), 85–124.
[8] Koopman, B.O., Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17, 1931, 315.
[9] Mezić, I., Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics 41 (2005), 309–325.
[10] A. Mauroy, I. Mezić, J. Moehlis, Isostables, isochrons, and Koopman spectrum for the action–angle representation of stable fixed point dynamics, Physica D: Nonlinear Phenomena 261 (2013) 19–30.
[11] Mauroy, A., Mezić, I., Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Transactions on Automatic Control, 2016 10.1109/TAC.2016.2518918.
[12] J.H. Tu, Clarence W. Rowley, D.M. Luchtenburg, S.L. Brunton, J.N. Kutz, On dynamic mode decomposition: theory and applications, Journal of Computational Dynamics 1 (2014) 391–421.
[13] Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S., Spectral analysis of nonlinear flows. Journal of Fluid Mechanics 641 (2009), 115–127.
[14] Susuki, Y., Mezić, I., Nonlinear Koopman modes and power system stability assessment without models. IEEE Transactions on Power Systems 29 (2014), 899–907.
[15] B. Eisenhower, T. Maile, M. Fischer, I. Mezić, Decomposing building system data for model validation and analysis using the Koopman operator, Proceedings of the National IBPSAUSA Conference, New York, USA, 2010.
[16] Lan, Y., Mezić, I., Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenomena 242 (2013), 42–53.
[17] Mezić, I., Analysis of fluid flows via spectral properties of the Koopman operator. Annual Review of Fluid Mechanics 45 (2013), 357–378.
[18] Jiang, D., Pierre, C., Shaw, S., The construction of non-linear normal modes for systems with internal resonance. International Journal of Non-Linear Mechanics 40 (2005), 729–746.
[19] Renson, L., Deliége, G., Kerschen, G., An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49 (2014), 1901–1916.
[20] J. Carr, Applications of centre manifold theory, Applied Mathematical Sciences, Vol. 35, Springer-Verlag, New York, 1981, 10.1007/978-1-4612-5929-9.
[21] Pesheck, E., Pierre, C., Shaw, S.W., A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. Journal of Sound and Vibration 249 (2002), 971–993.
[22] Blanc, F., Touzé, C., Mercier, J.F., Ege, K., Bonnet Ben-Dhia, A.S., On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mechanical Systems and Signal Processing 36 (2013), 520–539.
[23] Renson, L., Kerschen, G., Cochelin, B., Numerical computation of nonlinear normal modes in mechanical engineering. Journal of Sound and Vibration 364 (2016), 177–206.
[24] Boivin, N., Pierre, C., Shaw, S.W., Non-linear modal analysis of structural systems featuring internal resonances. Journal of Sound and Vibration, 182, 1995, 6.
[25] Jiang, D., Pierre, C., Shaw, S.W., The construction of non-linear normal modes for systems with internal resonance. International Journal of Non-Linear Mechanics 40 (2005), 729–746.
[26] S.A. Neild, A. Cammarano, D.J. Wagg, Nonlinear modal decomposition using normal form transformations, Topics in Nonlinear Dynamics, Vol. 1, Springer, New York, 2013, pp. 179–187, 10.1007/978-1-4614-6570-6.
[27] Arnol׳d, V.I., Geometrical Methods in the Theory of Ordinary Differential Equations, Vol. 250, 1988, Springer, New York.
[28] Haller, G., Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dynamics, 2016 arXiv preprint http://www.arxiv.org/abs/1602.00560.
[29] M.O. Williams, C.W. Rowley, I.G. Kevrekidis, A kernel approach to data-driven Koopman spectral analysis, arXiv preprint http://www.arxiv.org/abs/1411.2260, 2015.