Vanvinckenroye, Hélène ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Andrianne, Thomas ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Denoël, Vincent ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Language :
English
Title :
First passage time as an analysis tool in experimental wind engineering
Publication date :
2018
Journal title :
Journal of Wind Engineering and Industrial Aerodynamics
Alevras, P., Yurchenko, D., Naess, A., Numerical investigation of the parametric pendulum under filtered random phase excitation. Papadrakakis, M., Plevris, V., (eds.) V. P. (Ed.), Compdyn 2013. Kos Island, 2013.
Andrianne, T., de Ville de Goyet, V., Mitigation of the torsional flutter phenomenon of bridge deck section during a lifting phase. 8th International Colloquium on Bluff Body Aerodynamics and Applications, 2016, Northeastern University, Boston, Massachusetts, USA.
Barad, M.L., Project Prairie Grass, a Field Program in Dffusion, vols. I and II, 1958, Air Force Cambridge Research Labs Hanscom AFB MA.
Bishop, S., Clifford, M., Zones of chaotic behaviour in the parametrically excited pendulum. J. Sound Vib. 189:1 (1996), 142–147.
Bolotin, V.V., Random Vibrations of Elastic Systems. Vol. 8 of Mechanics of Elastic Stability. 1984, Springer, Netherlands, Dordrecht.
Canor, T., Caracoglia, L., Denoël, V., Perturbation methods in evolutionary spectral analysis for linear dynamics and equivalent statistical linearization. Probabilist. Eng. Mech. 46 (oct 2016), 1–17.
Carlotta, Costa, Claudio, Borri, Application of indicial functions in bridge deck aeroelasticity. J. Wind Eng. Ind. Aerod. 94:11 (nov 2006), 859–881.
Chopra, A.K., Dynamics of Structures: Theory and Applications to Earthquake Engineering. 2007, [Pearson Education India].
Chunbiao, G., Bohou, X., First-passage time of quasi-non-integrable-Hamiltonian system. Acta Mech. Sin. 16:2 (2000), 183–192.
Claudio, Borri, Carlotta, Costa, Quasi-steady analysis of a two-dimensional bridge deck element. Comput. Struct. 82:13–14 (may 2004), 993–1006.
Clifford, M., Bishop, S., Approximating the escape zone for the parametrically excited pendulum. J. Sound Vib. 172:4 (may 1994), 572–576.
Davenport, A.G., Buffeting of a suspension bridge by storm winds. J. Struct. Div. ASCE 88 (1962), 233–264.
de Sa Caetano, E., Cable vibrations in cable-stayed bridges. Engineering, I.A.f.B., (eds.) Structural Engineering Document, 2007, IABSE-AIPC-IVBH, 188.
Di Sabatino, S., Buccolieri, R., Salizzoni, P., Recent advancements in numerical modelling of flow and dispersion in urban areas: a short review. Int. J. Environ. Pollut., 52(3/4), 2013, 172.
Downing, S., Socie, D., Simple rainflow counting algorithms. Int. J. Fatig. 4:1 (jan 1982), 31–40.
Dyrbye, C., Hansen, S.O., Wind Loads on Structures. 1997, John Wiley & Sons.
Eden, J., Iny, A., Butler, A., Cranes in storm winds. Eng. Struct. 3:3 (jul 1981), 175–180.
Eden, J.F., Butler, A.J., Patient, J., Wind tunnel tests on model crane structures. Eng. Struct. 5:4 (1983), 289–298.
Fung, Y.C., An Introduction to the Theory of Aeroelasticity. 2002, Dover Publications.
Garira, W., Bishop, S., Rotating solutions of the parametrically excited pendulum. J. Sound Vib. 263:1 (2003), 233–239.
Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56:3 (jun 2008), 607–617.
Gitterman, M., Spring pendulum: parametric excitation vs an external force. Phys. Stat. Mech. Appl. 389:16 (2010), 3101–3108.
Gitterman, M., The Chaotic Pendulum. 2010, World Scientific Publishing.
Gousseau, P., Blocken, B., Stathopoulos, T., van Heijst, G., CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ. 45:2 (jan 2011), 428–438.
Grigoriu, M., Stochastic Calculus: Applications in Science and Engineering. 2002, Springer Verlag, Birkhäuser.
Gurley, K.R., Tognarelli, M.A., Kareem, A., Analysis and simulation tools for wind engineering. Probabilist. Eng. Mech. 12:1 (1997), 9–31.
Halitsky, J., RP-27–Gas Diffusion Near Buildings. 1963, Tech. rep.
Huber, A., Snyder, W., Wind tunnel investigation of the effects of a rectangular-shaped building on dispersion of effluents from short adjacent stacks. Atmos. Environ. 16 (1982), 2837–2848.
Kloeden, P.E., Platen, E., Numerical Solution of Stochastic Differential Equations. 1992, Spring Verlag, Heidelberg.
Kougioumtzoglou, I.A., Spanos, P.D., Nonstationary stochastic response determination of nonlinear systems: a wiener path integral formalism. J. Eng. Mech., 140(9), sep 2014 04014064.
Kougioumtzoglou, I.A., Spanos, P.D., Stochastic response analysis of the softening Duffing oscillator and ship capsizing probability determination via a numerical path integral approach. Probabilist. Eng. Mech. 35 (2014), 67–74.
Li, W.-W., Meroney, R.N., Gas dispersion near a cubical model building. Part I. mean concentration measurements. J. Wind Eng. Ind. Aerod. 12:1 (jun 1983), 15–33.
Lin, Y.K., Cai, G.Q., Probabilistic Structural Dynamics: Advanced Theory and Applications. 2004, McGraw-Hill.
Mallick, K., Marcq, P., On the stochastic pendulum with Ornstein-Uhlenbeck noise. J. Phys. Math. Gen., 37(17), 2004, 14.
Meroney, R., Wind tunnel and numerical simulation of pollution dispersion: a hybrid approach. Paper for Invited Lecture at the Croucher Advanced, 2004.
Meroney, R.N., Ten questions concerning hybrid computational/physical model simulation of wind flow in the built environment. Build. Environ. 96 (feb 2016), 12–21.
youtube1 Youtube.comMok, K., Crane Spinning Out of Control. 2008 www.youtube.com/watch?v=6h5p9WC6Y7s.
Moshchuk, N., Ibrahim, R., Khasminskii, R., Chow, P., Asymptotic expansion of ship capsizing in random sea waves-I. first-order approximation. Int. J. Non Lin. Mech. 30:5 (1995), 727–740.
Moshchuk, N.K., Ibrahim, R.A., Khasminskii, R.Z., Chow, P.L., Ship capsizing in random sea waves and the mathematical pendulum. IUTAM Symp. Adv. Nonlin. Stoch. Mech. 47 (1995), 299–309.
Náprstek, J., Král, R., Finite element method analysis of Fokker-Plank equation in stationary and evolutionary versions. Adv. Eng. Software 72 (jun 2014), 28–38.
Náprstek, J., Král, R., Evolutionary analysis of Fokker-Planck equation using multi-dimensional finite element method. Proced. Eng. 199 (jan 2017), 735–740.
Palleschi, V., Torquati, M.R., Mean first-passage time for random-walk span: comparison between theory and numerical experiment. Phys. Rev. 40:8 (oct 1989), 4685–4689.
Pontryagin, L., Andronov, A., Vitt, A., Appendix: on the statistical treatment of dynamical systems. Moss, F., McClintock, P.V.E., (eds.) Noise in Nonlinear Dynamical Systems Volume 1. Theory of Continuous Fokker-planck Systems, 1989, Cambridge University Press, 329–348.
Preumont, A., Random Vibration and Spectral Analysis. 1994, Kluwer Academic Publishers.
Primožič, T., Estimating Expected First Passage Times Using Multilevel Monte Carlo Algorithm. 2011, MSc in Mathematical and Computational Finance University.
Risken, H., The Fokker-planck Equation: Methods of Solution and Applications. 1996, 63–95.
Roach, P.E., The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 8:2 (jun 1987), 82–92.
Roberts, J.B., Yousri, S.N., An experimental study of first-passage failure of a randomly excited structure. J. Appl. Mech., 45(4), 1978, 917.
Schuss, Z., Theory and Applications of Stochastic Processes. Vol. 170 of Applied Mathematical Sciences. 2010, Springer New York, New York, NY.
Spano, P., D'Ottavi, A., Mecozzi, A., Daino, B., Piazzolla, S., Experimental measurements and theory of first passage time in pulse-modulated semiconductor lasers. IEEE J. Quant. Electron. 25:6 (jun 1989), 1440–1449.
Spanos, P.D., Kougioumtzoglou, I.A., Galerkin scheme based determination of first-passage probability of nonlinear system response. Struct. Infrastruct. Eng. 10:10 (oct 2014), 1285–1294.
Spanos, P.D., Kougioumtzoglou, I.A., Survival probability determination of nonlinear oscillators subject to evolutionary stochastic excitation. J. Appl. Mech., 81(5), jan 2014 051016.
Stathopoulos, T., Lazure, L., Saathoff, P., Gupta, A., The Effect of Stack Height, Stack Location and Rooftop Structures on Air Intake Contamination: a Laboratory and Full-scale Study. 2004, Tech. rep., IRSST, Quebec.
Stratonovitch, R. L.-., Silverman, R. A., Topics in the Theory of Random Noise. Volume II, Peaks of Random Functions and the Effect of Noise on Relays, Nonlinear Self-excited Oscillations in the Presence of Noise.
Sun, Z., Hou, N., Xiang, H., Safety and serviceability assessment for high-rise tower crane to turbulent winds. Front. Architect. Civ. Eng. China 3:1 (2009), 18–24.
Tominaga, Y., Stathopoulos, T., CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos. Environ. 79 (nov 2013), 716–730.
Tominaga, Y., Stathopoulos, T., Ten questions concerning modeling of near-field pollutant dispersion in the built environment. Build. Environ. 105 (aug 2016), 390–402.
Troesch, A.W., Falzarano, J.M., Shaw, S.W., Application of global methods for analyzing dynamical systems to ship rolling motion and capsizing. Internat. J. Bifurc. Chaos 02:01 (1992), 101–115.
Vanvinckenroye, H., Algorithm for the Determination of the First Passage Time Chart. 2017 https://orbi.ulg.ac.be/handle/2268/215378.
Vanvinckenroye, H., Denoël, V., Monte Carlo simulations of autorotative dynamics of a simple tower crane model. Proceedings of the 14th International Conference on Wind Engineering. Porto Alegre, Brazil, 2015.
Vanvinckenroye, H., Denoël, V., Stochastic rotational stability of tower cranes under gusty winds. 6th International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa, 2016.
Vanvinckenroye, H., Denoël, V., Average first-passage time of a quasi-Hamiltonian Mathieu oscillator with parametric and forcing excitations. J. Sound Vib. 406 (2017), 328–345.
Vanvinckenroye, H., Denoël, V., Second-order Moment of the First Passage Time of a Quasi-hamiltonian Oscillator with Stochastic Parametric and Forcing Excitations (Manuscript under Review). 2017 http://orbi.ulg.ac.be/handle/2268/213521.
Voisin, D., Etudes des effets du vent sur les grues à tour, “Wind effects on tower cranes”. Ph.D. thesis, 2003, Ecole Polytechique de l'Université de Nantes.
Voisin, D., Grillaud, G., Solliec, C., Beley-Sayettat, A., Berlaud, J.-L., Miton, A., Wind tunnel test method to study out-of-service tower crane behaviour in storm winds. J. Wind Eng. Ind. Aerod. 92:7–8 (jun 2004), 687–697.
Xu, X., Wiercigroch, M., Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dynam. 47:1–3 (2006), 311–320.
Yurchenko, D., Naess, A., Alevras, P., Pendulum's rotational motion governed by a stochastic Mathieu equation. Probabilist. Eng. Mech. 31 (2013), 12–18.