Paper published in a book (Scientific congresses and symposiums)
Gene Entity Recognition of Full Text Articles
Noll, Manuel; Lété, Jonathan; Meyer, Patrick
2017In ICBBS '17 Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science
Peer reviewed
 

Files


Full Text
Noll17ICCBS.pdf
Author preprint (285.6 kB) Creative Commons License - Attribution, Non-Commercial, ShareAlike
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
bibliomics; NER; Machine Learning; Automated gene-name identification
Abstract :
[en] Biomedical scientific literature is an unexploited treasure. Due to the staggering number of publications it is literally intractable to gather manually all information. Automatized information extraction (IE) is therefore key. An important subtask is the recognition of names in the text as specific entities ( named entity recognition, NER). NER for genes in biomedical literature is a challenging task. This paper reports preliminary results for the identification of gene names in full text with the naive Bayes, support vector machine and the random forest algorithm, showing that there is no loss on performance compared to the gene NER restricted to abstracts.
Disciplines :
Life sciences: Multidisciplinary, general & others
Computer science
Author, co-author :
Noll, Manuel ;  Université de Liège - ULiège > Département des sciences de la vie > Biologie des systèmes et bioinformatique
Lété, Jonathan ;  Université de Liège - ULiège > Master bioch. & biol. mol. & cel., à fin.
Meyer, Patrick  ;  Université de Liège - ULiège > Département des sciences de la vie > Biologie des systèmes et bioinformatique
Language :
English
Title :
Gene Entity Recognition of Full Text Articles
Publication date :
June 2017
Event name :
ICBBS '17: 6th International Conference on Bioinformatics and Biomedical Science
Event date :
June 22 - 24, 2017
Audience :
International
Main work title :
ICBBS '17 Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science
Publisher :
ACM, New York, United States
ISBN/EAN :
978-1-4503-5222-2
Pages :
162-167
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 02 October 2017

Statistics


Number of views
119 (17 by ULiège)
Number of downloads
21 (4 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi