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ABSTRACT 
Biomedical scientific literature is an unexploited treasure. Due to 

the staggering number of publications it is literally intractable to 

gather manually all information. Automatized information 

extraction (IE) is therefore key. An important subtask is the 

recognition of names in the text as specific entities (named entity 

recognition, NER). NER for genes in biomedical literature is a 

challenging task. This paper reports preliminary results for the 

identification of gene names in full text with the naive Bayes, 

support vector machine and random forest algorithms, showing  

that there is no loss on performance compared to the gene NER 

restricted to abstracts. 

CCS Concepts 

• Information systems~Chemical and biochemical 

retrieval   • Applied computing~Health care information 

systems   • Applied computing~Bioinformatics  

Keywords 
Bibliomics; Automated gene-name identification; NER; Machine  
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1. INTRODUCTION 

At the time of writing, MEDLINE, the most prominent online 

database for life sciences and biomedical information, cited to 

23,343,329 scientific abstracts as  of 2015 compared to 13,476,222 

in 2005, with a growth rate of about  800, 000 articles per year [17]. 

An abundance of biological information is stored in there. 

However, for a biomedical scientist it is literally impossible to  keep 

up with this speed.  

Automatized information extraction (IE) is a sine qua non 

instrument for a modern researchers. It is able to gather potential 

information on all kind of biological relevant processes, like gene 

functions, gene-gene interactions, gene-protein interaction, 

chemical compound relations, cell compound classification and 

many more.  

The former painstaking attention to detail being necessary  for 

model organisms as Drosophila melanogaster or Escherichia coli 

can now be done in an automatized manner for all reported 

organisms with a high precision within no time. An abyss of data 

can become a nutshell. For instance, gene – gene networks or gene-

protein networks can be extracted from literature. All it requires is 

the identification of entities and concepts, such as proteins and gene 

named entities.  The identification of entities is one of the central 

tasks to successfully integrate biomedical literature into the 

infrastructure of structured biomedical data resources. Up to this 

point, corresponding experiments were only conducted on 

abstracts. This paper focuses therefore on the identification of gene 

names in full text articles.  

However, retrieving and processing this information is challenging 

due to the natural-language narrative in biomedical literature. 

Although, the increasing interest in bioinformatics and annotated 

corpora, like GENIA[12], BioCreative[8], PennBio, FsuPrge and 

CRAFT [1] have accelerated this research. Nowadays' methods 

combine sophisticated methods from machine learning to natural 

language processing and outperform already human precision at 

some tasks. In this paper two contributions to this noble goal are 

made, 

• the random forest is successfully introduced for gene  

entity recognition 

• full text articles are consulted for gene entity recognition 

 

2. NAMED ENTITY RECOGNITION 

In the Sixth Message Understanding Conference (MUC-6), 

researchers were focusing on IE tasks where structured 

information is extracted from unstructured text. In defining this 

task, it became apparent that is an essential sub-task to recognize 

information units like names and was called „Named Entity 

Recognition and Classification (NERC)“. Previously unknown 

entities have to be discovered what hinges upon the classification 

rules triggered by features associated to positive and negative 

examples. That is either hand-crafed rules, supervised machine 

learning as a way to automatically induce rule-based systems or a 

hybrid of both. 

 

 

Submitted March 2017  

Revised August 2017  

For ICCBS’17 

 



NER Challenges for Biomedical Literature 
 

Applying NERC systems to biomedical literature started around 15 

years ago[6].It turned out that the major problem is the lack of 

convention for naming unambiguously biological concepts, such as 

genes or proteins. Many genes and proteins have more than one 

name. Furthermore, especially in the beginning of the genomic era, 

gene names were not distinguished from normal language. For 

example, for one of the first genomes studied, Drosophila, many 

genes are named after a specific phenotype of a mutant and have 

names such as 'white' (abbreviated by 'w'), 'shaggy' ('s') or 'mind the 

gap' ('mtg')[14]. Even if standards would be introduced and widely 

used, there is still a large amount of existing publications containing 

'old' names. Furthermore, it is very hard to distinguish between 

gene and protein names. Another challenge, the detection of word 

boundaries, has turned out to be one of the most difficult NER tasks 

(e.g. “HZF-7” vs. “HZF-7 protein”). 

 

BILOU Model 
 

One approach to tackle the boundary detection challenge is to label  

such multi-token chunks of gene names according to the scheme 

beginning, inside and last token, labeled by  'B', 'I', and 'L', 

respectively. Gene names that consist of only one token are 

considered as unit-length chunks and labeled by 'U'. All non gene 

name tokens are tagged by an 'O' for outside [18]. 

 

NER Features 

Dictionary-based 

Dictionaries are large lists of words that represent examples for a 

specific entity class. They can be easily build from databases and 

can either be matched exactly against names in the text or with any 

inexact pattern matching algorithm in order to compensate the very 

low recall of the former. 

Rule-based 

Rule-based approaches are related to the character makeup of 

words. They build on the definition of rules to separate different 

classes, describing word case, punctuation, alphanumerical 

appearance etc. So play digit pattern an important role in 

identifying gene names, though they appear also dates or intervals. 

A common approach is checking for morphological features of the 

word, like common word endings, like 'ist' for human professions 

(journalist, cyclist). However, such endings are apparently not 

useful for identifying gene names, but rather looking for patterns 

and so-called summarized patterns. Those rules allow to map a 

range of words onto a small subset of patterns over character types. 

It is therefore a possibility to map all uppercase letters to 'A', all 

lowercase letters to 'a', all digits to '0' and all punctuations to '-'. In 

a further step consecutive character types can be summarized, i.e. 

'000' becomes simply '0'.  

This hand-crafting of rules is time-consuming and has a couple of 

drawbacks. Different rules might not be mutually exclusive and 

lead therefore to interferences. Furthermore, as they are not 

comprehensive, they are not robust towards unseen patterns. 

3. MACHINE LEARNING 

Machine leaning is a highly interdisciplinary field building upon 

ideas from many different kinds of fields such as artificial 

intelligence, optimization theory, information theory, statistics, 

cognitive science, optimal control, and many other disciplines of 

science, engineering, and mathematics [8].  

It can be roughly divided into two sub-domains [10] : supervised 

learning and unsupervised learning. Briefly, supervised learning 

requires training with labeled data which has inputs and desired 

outputs. In contrast with the supervised learning, unsupervised 

learning does not require labeled training data and the environment 

only provides inputs without desired targets [8]. Let us  focus in 

this paper only on the former one, as it is the way of learning that 

our methods is using. From externally supplied labeled examples, 

a supervised machine learning reasons to produce a general 

hypotheses, called model, of the distribution of labels in terms of 

predictor features. Those labels can be assigned to classes to create 

a classifier that is able to predict to future instances or lables of 

unseen examples. Therefore, machine learning algorithms 

overcome following strictly static program instructions, i.e. the 

usage of hand-crafted rules. The NER task is basically a 

classification problem where each word in the text has to be 

assigned to a given class. In our case it is gene or not-gene. 

Unfortunately, the main shortcoming of supervised learning 

biomedical literature is the need for a large annotated corpus. There 

have been used a couple of classification algorithms for biomedical 

NER tasks. We discuss the Random Forest algorithm as it has not 

been used, to the best to our knowledge, for classifying names as 

genes in biomedical literature. 

Naive Bayes 

A naive Bayes is a simple classification algorithm that serves 

typically as baseline for evaluation. Let a classification task with k 

possible classes𝐶1,𝐶2,. . . , 𝐶𝑘be given. An instance, represented by a 

vector𝑥 = (𝑥1,𝑥2, . . . , 𝑥𝑛) , is then classified by the maximum a 

posteriori rule 

𝑎𝑟𝑔𝑚𝑎𝑥𝐾=1,2,...,𝑘𝑝(𝐶𝑘)∏𝑝 (𝑥𝑖 ∨ 𝐶𝑘)  
This simplification is due to the “naive” conditional independence 

assumption, assuming that each feature is independent given the 

class.   

Support Vector Machine 

A support vector machine [11] is a supervised learning algorithm 

typically applied to classification tasks of two classes. The given 

labeled instances are represented as points in a possibly high-

dimensional vector space. If the two classes are linearly separable, 

then the algorithm will find  the best separating (hyper-)plane 

between the two sets of points. That is, the gap between them is 

maximized. New instances are then labeled according to the side of 

the (hyper-)plane they are falling to. 

Random Forest 

A random forest is a state-of-the-art machine learning algorithm 

typically used for making new predictions (in both classification 

and regression tasks). Random Forests can perform non-linear 

predictions and, thus, those often outperform linear models. Since 

its introduction it has been widely used in many fields from gene 

regulatory network inference to generic image classification. 

Random forest relies on growing a multitude of decision trees, a 

prediction algorithm that has shown good performances by itself 

but, when combined with other decision trees (hence the name 

forest), returns predictions that are much more robust to outliers 

and noisy data.  



4. NATURAL LANGUAGE 

PROCESSING (NLP) 

Natural language processing (NLP) is a field of computer science, 

artificial intelligence, and linguistics concerned with the 

computational processing of natural (human) languages. One of the 

task involved in NLP is natural language understanding. It became 

apparent that this involves the classifications of tokens in a sentence 

into nouns, verbs, adjectives, prepositions, etc. This is called part-

of-speech (POS) tagging, which is considered to be the most basic 

form of linguistic corpus annotation. 

This meta-informaion generated by grammatically analysing 

sentences can improve the ability to extract compound names, for 

which reason that many NER approaches include a POS tagger.  

For the purpose of gene/protein name extraction, POS information 

can also be used in rule-based 

systems for rule conditions and/or error recovery, or as features in 

machine learning algorithms. 

5. GOLD STANDARD CORPORA 

In order to validate a gene-name identified in text a manually 

annotated corpus of biomedical literature is consulted. Schuhman 

et al[Evaluating gold standard corpora against gene/protein tagging 

solutions and lexical resources] specify a list of gold standard 

corpora for this purpose : (1) Jnlpba which stems from the Genia 

corpus [12], (2) BioCreative-II (2007) for human PGNs [8;9], (3) 

PennBio corpus (2006–2007) about oncology, (4) FsuPrge corpus 

(2009) on gene-regulatory events, and (5) the CRAFT corpus 

(2016)[1]. The latter one is the only corpus containing full text 

articles, which stems from the PubMed Central Open Acces Subset.   

Leser and Hakenberg[15] report that the best performing systems 

in the 2004 BioCreative competition yielded F1-score around 83%, 

and the best performing system in the 2004 BioNLP/NLPBA 

competition reached about 70% F1-score. And furthermore, they 

gave cause for serious concern that when the best current NER 

systems reach an F-measure around 85 per cent, there is a real 

danger that all systems reporting better results will only represent 

an overfitting of the method to the particular gold standard, ie 

annotator. While Schuhman et al. evaluated gold standard corpora 

against gene tagging, they could not consider the CRAFT corpus in 

their studies as it and was not yet available during the experimental 

phase of their work in 2013. To the best of our knowledge, there 

has neither been any study performed on gene tagging consulting 

the CRAFT corpus nor using full text articles at all. The corpus 

contains 67 full text articles, > 560,000 Tokens, > 21,000 sentences 

and approximately 100,000 annotations to 7 different biomedical 

taxonomies/ontologies such as GO, NCBI and Entrez Gene (see 

Table 1). 

Table 1. Basic statistics about the CRAFT corpus 

Number of Articles 67 

Type of Article Full Article 

Tokens > 560,000 

Sentences > 21,000 

Annotations 100,000 

Ontologies / Taxonomies 

• Chemical Entities of 

Biological Interest 

• Cell Ontology  

• Entrez Gene  

• Gene Ontology 

(biological process, 

cellular component, 

and molecular 

function)  

• NCBI Taxonomy  

• Protein Ontology  

• Sequence Ontology 

 

6. METHOD 

The methods' base is composed of statistical rules about the 

character makeup of the token and its textual neighborhood.  The 

gene name boundary challenge was taken into account by using the 

BILOU model. In order to compensate the (highly) imbalanced 

classes of genes and not  genes, stratification of the data set was 

applied [2;16]. 

Statistical Features in Detail 

Frequency based rules 

The articles in the CRAFT corpus are not related to each other, 

apart from being biomedical literature. Therefore, the articles can 

be considered independent; in the sense that an inferred  textual 

neighborhood structure appearing in several articles is not due to 

the same author's use of language, but rather a real significant 

relationship that goes beyond the CRAFT corpus. Therefore, the 

CRAFT corpus has been used to infer statistical propositions  about 

the character makeup of the token. 

The statistical rules cover several textual neighborhood structures 

and makeup patterns of a gene name. Those rules catch the obvious 

gene names deviating appearance from 'common' names in that 

they consider token makeups were all letters are capitalized like for 

the gene HBB, or having digit(s) and special character(s) as in the 

SERPINA1 or the β-Klotho gene. HBB exhibits also the 

characteristic of some gene names as  'unpronounceable” words, 

wherefore the number of vowels, consonants and consecutive 

consonants seems to serve as a significant identifier.  

See Table 3 for the statistical token makeup rules. 

Table 2. Statistical Rules For a Token ( '#' number of) 

#  upper case letters 

# lower case letters 

# letters 

# digits 

# punctuation 

# vowel 

# consonants 

# Greek letters 

# consecutive consonants 

 

The pure number of occurrence reflects an overall importance of 

this property for this token. In order to reflect an impact of this 

property on this token, a normalized version for each feature is 

generated i.e. dividing the total occurrence by the length of the 

word. 



Pattern based rules 

Pattern features were introduced by Collins [4] as a mean to map 

tokens onto a small set of patterns over character types. The pattern 

feature map alls uppercase letters to 'A', all lowercase letters to 'a', 

all digits to '0' and all punctuation to '-'. 

The abridged pattern feature is a condensed form of it in which 

consecutive character types are not repeated in the mapped string.  

Table 3 shows some examples.  

Table 3. Pattern mapping and abridged patterns 

Token Pattern Abridged 

Hoi Aaa Aa 

pipeloi aaaaaaa a 

Gal41-B Aaa00-A Aa0-A 

 

A common approach to map tokens to a pattern is called stemming, 

consisting of stripping off both inflectional and derivational 

suffixes before it is matched [3]. For this purpose the R package 

SnowballC is used (CRAN SnowballC, 2014). 

Proper identifications of prefixes and suffixes improve the 

precision of classifier by excluding false positives. Apparently, 

prefixes like 'an' and 'anti', and likewise suffixes might include each 

other and are not easily identifiable by a dictionary.-less machine 

learning algorithm. Therefore, each 1-gram up to 5-grams of each 

token's beginning and ending letter sequence is considered as a 

feature. Additionally a binary feature states whether the last 

character of the token is a  roman number. 

POS tagging 

The Stanford CoreNLP tagger [13] is consulted to incorporate 

grammatical structures. Each token in the CRAFT corpus is labeled 

with its corresponding part-of-speech tag. This information is fed 

into a machine learning algorithm to build the classifier. 

7. EXPERIMENTS AND RESULTS 

The goal is to test whether a high degree of precision can be 

achieved for the automatized identification of gene names in full 

text. 

For this reason the CRAFT corpus has been chosen in this 

experiment. It was mutually exclusively divided into a training of 

47 full articles and a text set of 20 full articles.  

The automating is implemented by three supervised machine 

learning algorithm. A naive Bayes (NB), which will serve as a 

baseline for measuring the precision, a support vector machine 

(SVM) and a random forest (RF). The R packages e1071 (CRAN 

e1071, 2016), for NB and SVM, and  randomForest (CRAN 

randomForest, 2015) for RF have been used for this purpose.  

The test set contained 139.690 tokens, where 4687 refer to a gene. 

For the evaluation, the true positives (tp), false positives (fp),  and 

false negatives (fn) are counted and finally the precision, recall and 

F1-measure are computed: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

In order to deal with the identification of the boundary of a gene 

name the BILOU token labeling is applied. The labeling 'B', 'I', 'L' 

and 'U' designate a gene token. A soft-matching is used to 

evaluate the true positives, false positives and false negatives. If 

parts of a gene are predicted to be 'B', 'I', 'L' or 'U', then it is 

considered as a true positive, while the part  wrongly classified 

accounts for a false negative. False positive are non-gene tokens 

classified as either 'B', 'I', 'L' or 'U'. Clearly, correctly identified 

non-gene tokens, labeled by 'O' , account also for the true 

positives.  

The  contextual neighborhood structure is taken into account  by 

considering the above described 33 features for a token window 

size of 1, i.e. for the token before the current and one afterwards.  

POS vs. Non-POS 

In a first conducted experiment series the effect of a POS tagger 

was evaluated. First, the combined statistical rules were invoked to 

generate the features for each token in the training text, without 

incorporating any POS information. This was fed into the NB, 

SVM and RF each. The RF has been trained with 200 trees using 

the Gini index.  

The running time of the tests showed significant differences. While 

the SVM needed 1h 19m, the NB took 2m 31s and the RF 10m 21s 

on a 1.2GHz Intel Core Duo Processor.. Table 4 shows the 

corresponding  outcome for the precision, recall and the F1-score. 

 Table 4. Precision, Recall and F1 score, without POS 

Method Precision Recall F1-score Time 

Naive Bayes 5.76% 93.08% 10.86% 2m 31s 

SVM 66.68% 39.48% 49.59% 1h 19m 

Random 

Forest 
69.15% 60.16 % 64.34% 10m 21s 

 

In the second experiment, the Stanford CoreNLP POS tagger 

labeled additionally the training set, before it was fed into the 

algorithms. The annotation of the data set took additionally 1h 45m. 

The running time of the algorithms altered not in magnitude, NB 

3m 30s, RF 8m 5s, and the SVM in 1h 23m. The POS-tagged model 

is performing better than the not tagged one, which is in accordance 

with our expectations. Although, its just minimal increase might be 

due to the fact that the feature set is already informative enough to 

explain the POS tagging. However, it dropped the running time of 

the RF as it helped to  earlier classify the tokens in a decision tree 

(see Table 5). Although, this presumably has happened due to 

overfitting,  a deeper analysis and corresponding experiment has to 

be conducted.  

Table 5. Precision, Recall and F1 score, with POS 

Method Precision Recall F1-score Time 

Naive Bayes 7.29% 92.69% 13.52% 3m 30s 

SVM 67.00% 39.33% 49.57% 1h 23m 

Random 

Forest 
69.82% 61.28 % 65.27% 8m 5s 

 

The best F1 score of 65.27% and a precision of 69.82% was 

achieved by a RF of 200 trees using the Gini index, POS tagging 

and data stratification. 



Tuning the Number of Trees 

In a second conducted experiment series the sensitivity of the 

performance on the number of trees was evaluated by a step-wise 

increase of the number of trees. In order to guarantee to become not 

as pricey as a SVM in terms of running time, a maximum number 

of 1000 trees has been tested, taking already ~1h compared to 

2m10s for 50 trees. Table 6 shows that the trend of the F1-score and 

precision are stable, for the number of trees n =50, 100, 200, 500, 

1000, being around 65%, 69% respectively. 

 

 Table 6. Precision, Recall and F1 score, without POS 

Trees Precision Recall F1-score Time 

50 68.72 61.53 64.93 2m 10s 

100 69.86 61.45 65.39 4m 12s 

200 69.82 61.28 65.27 8m 32s 

500 69.98 61.49 65.46 2m 20s 

1000 70.79 61.78 65.98 59m 22s  

 

 

8. RELATED WORK 

Comparing gene name identification methods is difficult, because 

some distinguish between genes, proteins and enzymes and others 

do not. In between is a wide range of possible combinations. The 

PROPER system of Fukuda et. el [5] achieved a precision of 95 % 

and a recall of 99 %  using 30 abstracts about the SH3 protein 

domain. Kazama et. el [11] achieved on the whole GENIA corpus 

of  abstracts an F1-score of 45.99% for the identification of all 

biomedical entities available in this corpus. Leser and 

Hakenberg[15] reported that the best performing systems in the 

2004 BioCreative competition [9] yielded F-measures around 83%, 

and the best performing system in the 2004 BioNLP/NLPBA 

competition reached about 70% F1-score. 

9. CONCLUSIONS 

The CRAFT corpus contains 67 full articles from the PubMed 

Central Open Acces Subset. The articles are not directly related to 

each other, and can therefore be considered independent. Hence, 

learning on a subset and testing on the remaining articles is not 

overfitting the model to a certain article type. I.e. the propositions 

A and B found as being significant for classifying a token as a gene 

is not restricted to the CRAFT corpus. 

The perfomance of the Random Forest can therefore be to some 

extend extrapolated to other corpora. It is expected that due to more 

examples the performance can be improved. A more 

comprehensive test is planed. Unfortunately is the amount of fully 

annotated articles sparse and future experiments will consider the 

corpora Jnlpba, BioCreative, PennBio and FsuPrge, which 

comprise only abstracts of biomedical articles. 

While the statistical rules for the makeup pattern of a gene name  

cover a wide range of possible alphanumeric combinations for gene 

names, the textual neighborhood of a gene name might not be well 

captured by the very same features on a corpus of 67 articles. It is 

expected that a larger corpus will improve those rules, as the later 

has to cover a wide range of semantically meaningful word/verb-

tokens surrounding a gene name.  

Furthermore, a more technical issue has to be addressed concerning 

the loss of information about the character makeup by downloading 

articles in plain text. For instance, Gene names are nowadays 

mostly written in italic. In combination with the publication date of 

an article this might further improve the performance. 

The nature of the results in this paper is twofold. First, it is shown 

that a random forest performs well on the automated gene-name 

extraction task. Purely abstract based gene name extraction reach a 

F1-score of about 65%. Therefore, second, the automated gene 

name extraction can successfully be extended to full texts without 

loss of performance. 
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