Borbely, A. A. A two process model of sleep regulation. Hum Neurobiol 1, 195-204 (1982).
Dijk, D. J., Beersma, D. G., Daan, S. EEG power density during nap sleep: Reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2, 207-219 (1987).
Strogatz, S. H., Kronauer, R. E., Czeisler, C. A. Circadian pacemaker interferes with sleep onset at specific times each day: Role in insomnia. Am J Physiol 253, R172-178 (1987).
Dijk, D. J., Czeisler, C. A. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166, 63-68, doi:0304-3940(94)90841-9 (1994).
Edgar, D. M., Dement, W. C., Fuller, C. A. Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. J Neurosci 13, 1065-1079 (1993).
DelRosso, L. M., Hoque, R., James, S., Gonzalez-Toledo, E., Chesson, A. L. Jr. Sleep-wake pattern following gunshot suprachiasmatic damage. J Clin Sleep Med 10, 443-445, doi: 10.5664/jcsm.3628 (2014).
Dijk, D. J., Duffy, J. F., Czeisler, C. A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res 1, 112-117, doi:jsr001002112 (1992).
Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A., Dijk, D. J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol 277, R1152-1163 (1999).
Deboer, T., Detari, L., Meijer, J. H. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30, 257-262 (2007).
Deboer, T., Vansteensel, M. J., Detari, L., Meijer, J. H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6, 1086-1090 (2003).
Dijk, D. J., Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15, 3526-3538 (1995).
van Diepen, H. C. et al. Caffeine increases light responsiveness of the mouse circadian pacemaker. Eur J Neurosci, doi: 10.1111/ejn.12715 (2014).
Mistlberger, R. E., Landry, G. J., Marchant, E. G. Sleep deprivation can attenuate light-induced phase shifts of circadian rhythms in hamsters. Neurosci Lett 238, 5-8 (1997).
Challet, E., Turek, F. W., Laute, M., Van Reeth, O. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: Role of serotonergic and metabolic signals. Brain Res 909, 81-91 (2001).
Vyazovskiy, V. V., Achermann, P., Tobler, I. Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74, 37-44, doi: 10.1016/j.brainresbull.2007.05.001 (2007).
Lazar, A. S., Lazar, Z. I., Dijk, D. J. Circadian regulation of slow waves in human sleep: Topographical aspects. Neuroimage 116, 123-134, doi: 10.1016/j.neuroimage.2015.05.012 (2015).
Deboer, T. Sleep and sleep homeostasis in constant darkness in the rat. J Sleep Res 18, 357-364, doi: 10.1111/j.1365-2869.2008.00728.x (2009).
Dijk, D. J., Archer, S. N. Circadian and Homeostatic Regulation of Human Sleep and Cognitive Performance and Its Modulation by PERIOD3. Sleep Med Clin 4, 111-125 (2009).
Phillips, A. J., Robinson, P. A. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22, 167-179, doi: 10.1177/0748730406297512 (2007).
Skeldon, A. C., Dijk, D. J., Derks, G. Mathematical models for sleep-wake dynamics: Comparison of the two-process model and a mutual inhibition neuronal model. PLoS One 9, e103877, doi: 10.1371/journal.pone.0103877 (2014).
Saper, C. B. The central circadian timing system. Curr Opin Neurobiol, doi:S0959-4388(13)00093-7 (2013).
Cohen, R. A., Albers, H. E. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology 41, 726-729 (1991).
Schmidt, C. et al. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science 324, 516-519 (2009).
Owen, A. M., McMillan, K. M., Laird, A. R., Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25, 46-59, doi: 10.1002/hbm.20131 (2005).
Lavie, P. Ultrashort sleep-waking schedule. III. 'Gates' and 'forbidden zones' for sleep. Electroencephalogr Clin Neurophysiol 63, 414-425 (1986).
Munch, M. et al. Age-related attenuation of the evening circadian arousal signal in humans. Neurobiol Aging 26, 1307-1319 (2005).
Borbely, A. A., Achermann, P. Sleep homeostasis and Models of Sleep Regulation in Principles and Practice of Sleep Medicine (ed. Roth, T., Kryger, M. H., Dement, W. C.) 405-418 (Elsevier Saunders, 2005).
Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 18, 394-412, doi: 10.1080/09658211003702171921420785 (2010).
Drummond, S. P. et al. Sleep deprivation-induced reduction in cortical functional response to serial subtraction. Neuroreport 10, 3745-3748 (1999).
Mu, Q. et al. Decreased cortical response to verbal working memory following sleep deprivation. Sleep 28, 55-67 (2005).
Lythe, K. E., Williams, S. C., Anderson, C., Libri, V., Mehta, M. A. Frontal and parietal activity after sleep deprivation is dependent on task difficulty and can be predicted by the fMRI response after normal sleep. Behav Brain Res 233, 62-70, doi: 10.1016/j.bbr.2012.04.050 (2012).
Draganski, B. et al. Hypothalamic gray matter changes in narcoleptic patients. Nat Med 8, 1186-1188 (2002).
Zeitzer, J. M. et al. Circadian and homeostatic regulation of hypocretin in a primate model: Implications for the consolidation of wakefulness. J Neurosci 23, 3555-3560 (2003).
Saper, C. B., Scammell, T. E., Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263 (2005).
Deadwyler, S. A., Porrino, L., Siegel, J. M., Hampson, R. E. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27, 14239-14247, doi: 10.1523/JNEUROSCI.3878-07.2007 (2007).
Power, J. D., Plitt, M., Laumann, T. O., Martin, A. Sources and implications of whole-brain fMRI signals in humans. Neuroimage 146, 609-625, doi: 10.1016/j.neuroimage.2016.09.038 (2017).
Wright, K. P., Lowry, C. A., Lebourgeois, M. K. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 5, 50, doi: 10.3389/fnmol.2012.00050 (2012).
Buysse, D. J., Reynolds, C. F. 3rd, Monk, T. H., Berman, S. R., Kupfer, D. J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res 28, 193-213, doi:0165-1781(89)90047-4 (1989).
Beck, A. T., Steer, R. A., Brown, G. K. BDi-II, Beck depression inventory: Manual. 2nd edn, (Harcourt Brace, 1996).
Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17, 613-618 (2007).
Bachmann, V. et al. Functional ADA Polymorphism Increases Sleep Depth and Reduces Vigilant Attention in Humans. Cereb Cortex 22, 962-970, doi:bhr173 (2012).
Reichert, C. F. et al. The Circadian Regulation of Sleep: Impact of a Functional ADA-Polymorphism and Its Association to Working Memory Improvements. PLoS One 9, e113734, doi: 10.1371/journal.pone.0113734 (2014).
Reichert, C. F. et al. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism. J Biol Rhythms 29, 119-130, doi: 10.1177/0748730414524898 (2014).
Maire, M. et al. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation. Front Behav Neurosci 8, 59, doi: 10.3389/fnbeh.2014.00059 (2014).
Maire, M. et al. Fighting sleep at night: Brain correlates and vulnerability to sleep loss. Ann Neurol. doi: 10.1002/ana.24434 (2015).
Maire, M. et al. Sleep ability mediates individual differences in the vulnerability to sleep loss: Evidence from a PER3 polymorphism. Cortex 52, 47-59, doi: 10.1016/j.cortex.2013.11.008 (2014).
Cajochen, C., Knoblauch, V., Krauchi, K., Renz, C., Wirz-Justice, A. Dynamics of frontal EEG activity, sleepiness and body temperature under high and low sleep pressure. Neuroreport 12, 2277-2281 (2001).
Sagaspe, P. et al. Influence of age, circadian and homeostatic processes on inhibitory motor control: A Go/Nogo task study. PLoS One 7, e39410, doi: 10.1371/journal.pone.0039410 (2012).
Akerstedt, T., Gillberg, M. Subjective and objective sleepiness in the active individual. Int J Neurosci 52, 29-37 (1990).
Leonhart, R. Lehrbuch Statistik. (Verlag Hans Huber, 2004).
Rechtschaffen, A., Kales, A. A. A manual of standardized terminology, techniques and scoring system of sleep stages of human subjects. Bethesda, MD: US Dept of Health, Education and Welfare, Public Health Service (1968).
Berthomier, C. et al. Automatic analysis of single-channel sleep EEG: Validation in healthy individuals. Sleep 30, 1587-1595 (2007).
Van Someren, E. J., Nagtegaal, E. Improving melatonin circadian phase estimates. Sleep Med 8, 590-601, doi:S1389-9457(07)00087-1 (2007).
Kolodyazhniy, V. et al. An improved method for estimating human circadian phase derived from multichannel ambulatory monitoring and artificial neural networks. Chronobiol Int 29, 1078-1097, doi: 10.3109/07420528.2012.700669 (2012).
Benloucif, S. et al. Measuring melatonin in humans. J Clin Sleep Med 4, 66-69 (2008).
Lewy, A. J., Sack, R. L. The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int 6, 93-102 (1989).