Article (Scientific journals)
Probabilistic Framework for the Characterization of Surfaces and Edges in Range Images, with Application to Edge Detection
Lejeune, Antoine; Verly, Jacques; Van Droogenbroeck, Marc
2018In IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (9), p. 2209-2222
Peer Reviewed verified by ORBi
 

Files


Full Text
Lejeune2017Probabilistic.pdf
Author postprint (7.27 MB)
Probabilistic Framework for the Characterization of Surfaces and Edges in Range Images, with Application to Edge Detection
Download
Annexes
Lejeune2017Probabilistic-supplemental-materials.pdf
Publisher postprint (1.89 MB)
Supplemental material
Download

2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
image edge detection; range image; probability density function; surface; probabilistic framework; time-of-flight camera; kinect
Abstract :
[en] We develop a powerful probabilistic framework for the local characterization of surfaces and edges in range images, which is useful in many applications of computer vision, such as filtering, edge detection, feature extraction, and classification. We use the geometrical nature of the data to derive an analytic expression for the joint probability density function (pdf) for the random variables used to model the ranges of a set of pixels in a local neighborhood of an image. We decompose this joint pdf by considering independently the cases where two real world points corresponding to two neighboring pixels are locally on the same real world surface or not. In particular, we show that this joint pdf is linked to the Voigt pdf and not to the Gaussian pdf as it is assumed in some applications. We apply our framework to edge detection and develop a locally adaptive algorithm that is based on a probabilistic decision rule. We show in an objective evaluation that this new edge detector performs better than prior art edge detectors. This proves the benefits of the probabilistic characterization of the local neighborhood as a tool to improve applications that involve range images.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Telim
Disciplines :
Computer science
Author, co-author :
Lejeune, Antoine ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Verly, Jacques ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Van Droogenbroeck, Marc  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Probabilistic Framework for the Characterization of Surfaces and Edges in Range Images, with Application to Edge Detection
Publication date :
September 2018
Journal title :
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN :
0162-8828
Publisher :
IEEE
Volume :
40
Issue :
9
Pages :
2209-2222
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Région wallonne
Available on ORBi :
since 01 September 2017

Statistics


Number of views
135 (22 by ULiège)
Number of downloads
458 (21 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenCitations
 
4
OpenAlex citations
 
7

Bibliography


Similar publications



Contact ORBi