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Probabilistic Framework for the Characterization
of Surfaces and Edges in Range Images,

with Application to Edge Detection
Antoine Lejeune, Jacques G. Verly, and Marc Van Droogenbroeck

Abstract—We develop a powerful probabilistic framework for the local characterization of surfaces and edges in range images. We
use the geometrical nature of the data to derive an analytic expression for the joint probability density function (pdf) for the random
variables used to model the ranges of a set of pixels in a local neighborhood of an image. We decompose this joint pdf by considering
independently the cases where two real world points corresponding to two neighboring pixels are locally on the same real world
surface or not. In particular, we show that this joint pdf is linked to the Voigt pdf and not to the Gaussian pdf as it is assumed in some
applications. We apply our framework to edge detection and develop a locally adaptive algorithm that is based on a probabilistic
decision rule. We show in an objective evaluation that this new edge detector performs better than prior art edge detectors. This proves
the benefits of the probabilistic characterization of the local neighborhood as a tool to improve applications that involve range images.

Index Terms—Range image, surface, probabilistic framework, edge detection, time-of-flight camera, Kinect
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1 INTRODUCTION

CHaracterizing how real world objects and their surfaces
are imaged by a camera is the basis of many image

processing and computer vision methods. Range cameras,
which are cameras that measure the depth between each
pixel of the sensor plane and the corresponding element in
the scene, bring pertinent information that can be used by
algorithms that interpret images. However, many methods
dedicated to range images tend to consider these images
in the same way as grayscale or color images [15], and
this ignores the physics of the process for acquiring range
images.

Because 3D information is crucial for many computer
vision tasks, several methods for capturing 3D informa-
tion have been developed, such as methods of stereo-
matching [18] and methods that physically measure the
range through the use of active sensors. The use of active
sensors allows to achieve a high level of precision [4].
Recent technological advances have permitted the produc-
tion of commodity range cameras capable of producing
range images, at high spatial resolution and real-time frame
rate, that contain, at each of their pixels, the range of the
corresponding element in the scene. These devices include
time-of-flight (ToF) cameras [23] and structured-light (SL)
cameras such as the Microsoft Kinect 1 [10] for the SL case.

In this paper, we present a probabilistic framework for
surfaces and edges in range images. While machine learning
algorithms have recently been shown to deal efficiently
with range images [13], [33], a probabilistic framework is
complementary and could even be combined with machine
learning methods. Also, our framework leads to a better
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Figure 1. (a) Schematic view of a surface seen by a range camera. P
andQ are two points that belong to this surface; they show up at pixels p
and q in a corresponding range image. (b) Plot of the probability density
function (pdf) of the random variable Zq that represents the range of q,
given the range zp of p and the assumption that P and Q belong to
the same surface. This paper establishes that this pdf is a Voigt pdf and
shows how to use this finding for edge detection.

understanding of range images. One of our findings is
illustrated in Fig. 1. Also, we show how our framework can
be used for the detection of edges, one of the fundamental
image descriptors. In this framework, we view the range
values of the pixels as realizations of random variables
(RVs), and exploit the fact that the geometrical nature of
the data produced by range cameras constrains the joint
probability density function (pdf) of the range values of two
pixels when they correspond to two real world points from
the same continuous real world surface, or, inversely, when
they straddle a jump edge. We obtain analytic expressions
for this joint pdf, which can then be used in applications.

In Section 2, we discuss the prior art for the modeling of
range images, with a focus on how edges and surfaces are
represented. In Section 3, we determine, using a Bayesian
approach, the two joint pdfs of the range values of two
pixels under the following two complementary conditions:
(1) both pixels correspond to two real world points on the
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(a) Range image (b) Edges

Figure 2. (a) Representation with false colors of a range image obtained
with a Microsoft Kinect 1 camera. (b) Corresponding edges obtained by
application of an edge detector based on the framework described in
this paper.

same surface; (2) both pixels straddle a jump edge. These
expressions constitute the core of our framework, and are
the main contribution of this paper. In Section 4, we extend
our framework to express the joint pdf corresponding to the
range values of more than two pixels when we consider that
they all correspond to the same real world planar surface.
In Section 5, we apply our framework to edge detection;
Figure 2 illustrates the edges obtained from a range image.
In Section 6, we evaluate the performance of the edge
detector based on our new framework and compare it with
other edge detectors. Section 7 concludes this paper.

2 STATE-OF-THE-ART

In this paper, we consider the value (called the range or the
depth) of each pixel of a range image as being a realization
of a random variable (RV), and we determine the probability
density function (pdf) of this RV and the joint pdf of the
RVs corresponding to the ranges of two neighboring pixels
according to a model of the acquisition process and of the
real world surfaces. In this section, we review the current
state of the art for similar characterizations of the pdf of
range values, then the current state of the art for modeling
the noise for range cameras, and finally the current state of
the art for modeling surfaces and the edges between them.

2.1 Statistics of range images

There have been only a few attempts to characterize the pdf
of a RV representing a pixel value in a range image. Huang
et al. [15] studied the statistics of a database of static forest
scenes captured by a laser range finder and showed that the
output of a derivative filter applied to the logarithm of range
values is characterized by a pdf similar to that of grayscale
images, i.e. with a high kurtosis (high peak, large tail).

The authors of [24] considered the range of a pixel
as a RV and modeled the joint pdf of the ranges of two
pixels by marginalizing out the RV denoting whether the
two pixels belong to the same object or not. When these
pixels belong to the same object, the authors model the
joint pdf by a large tailed pdf and, otherwise, they assume
the statistical independence of the two corresponding range
RVs. In our framework, we make the same marginalization,
but we derive analytic expressions for the pdfs instead of
assuming some parametric large tailed pdfs and learning
the parameters of these pdfs on a database of images.

2.1.1 Noise model for range cameras
The image acquisition process usually results in the corrup-
tion of the range value of each pixel of an image with noise.
A good characterization of the pdf of the noise at a pixel
p is thus helpful to characterize the acquisition process. In
range images, the noise can be very different from the noise
encountered in luminance images. In images captured by
time-of-flight and structured-light cameras, one can observe
that the standard deviation of the noise varies across the im-
age. For ToF cameras, experimental and theoretical analyses
of the noise have established that it can be modeled by an
additive Gaussian noise, whose standard deviation σToF (p)
at pixel p is proportional to the inverse of the strength of
the signal used to measure the range, commonly called the
amplitude, denoted by A (p), and provided by most ToF
cameras [19], [27], [30]. In mathematical terms, we have

σToF (p) = σbase + κ
1

A (p)
, (1)

where σbase is the part of the noise that is independent
of the scene, and κ is the factor related to the inverse of
the amplitude. The values of σbase and κ may change with
the settings of the camera (such as the integration time).
We note that this model is valid only for some domain of
amplitudes [27]. Outside of this domain, the model in Eq. (1)
underestimates the standard deviation of the noise. This
occurs when the sensor saturates or when the power level
of the return signal is low. The amplitude reflects various
noise effects, such as those associated with the reflective
properties of the materials and the attenuation of the signal
due to the distance between the camera and the scene. We
also note that ToF data can produce a bias in the range
measurements. However, this bias can be corrected for by
the use of appropriate calibration techniques [26].

The Kinect 1 and other SL cameras do not measure
the range of the scene directly but, instead, reconstruct
range values during a process similar to that of stereoscopic
cameras. Khoshelham [20] showed that the noise σSL (p) at
a pixel p has a Gaussian pdf and that its standard deviation
is proportional to the square of the range zp. So, we have

σSL (p) = κz2
p, (2)

where κ is a constant factor.
By contrast with ToF cameras, the noise for SL cameras

is not dependent on scene properties such as the reflectance
of materials or the orientation of surfaces. However, the
Kinect 1 produces no range data for parts of the scene where
the reconstruction method fails.

2.2 Surfaces and edges in range images
By contrast with grayscale and color cameras, range cameras
capture geometrical information that is directly linked to
the local characteristics of the real world surfaces and their
borders. Therefore, it is useful to understand the charac-
teristics of these surfaces and of their edges, and how
they are related to the range values in the image. In the
literature dedicated to edge detection, ones finds models for
how real world surfaces and their borders are transformed
when imaged by a range camera. For range images, edge
detection methods often detect both jump edges and roof
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edges. Jump edges correspond to the borders between lo-
cally continuous surfaces and occur when one object of the
scene occludes another one (occlusion border), while roof
edges correspond to the set of real world points where a
surface is locally continuous but not differentiable and occur
when the orientation of the surface of an object changes
abruptly. In the image, the jump and roof edges correspond
to discontinuities in the image and its gradient, respectively.
In the following, we first deal with how jump and roof edges
are perceived by a range camera, and we then focus on
methods for edge detection in range images.

SL and ToF cameras do not perceive a jump edge in the
same way. First, for a SL camera, the reconstruction per-
formed by the camera guarantees that range values always
correspond to real continuous surfaces of the scene. Thus,
in the image, a jump edge corresponding to the occlusion
border between two real world surfaces can be thought
of as being in between the pixels in one or more pairs of
neighboring pixels, where one pixel in a pair corresponds
to one of the two surfaces and the other pixel in this pair
corresponds to the other surface. This jump edge can also
be represented by these pairs of neighboring pixels. In
other words, the real world border between two surfaces
is mapped into the image as a two pixels wide curve.

Second, for a ToF camera, there is no reconstruction step
and the range images are measured by the camera. Thus, a
jump edge corresponding to an occlusion border between
two real world surfaces of the scene can be mapped in
the image into one or more transition pixels, called veiled
pixels [35], located between the pixels that correspond to
each of the two surfaces. The range measured at veiled pixel
is a mixture of the ranges corresponding to the two surfaces
at their intersection. The ranges of veiled pixels has no real
physical meaning. Note that some authors have developed
techniques to detect these pixels [2], [35].

A roof edge will always correspond to a point on a
continuous surface and its range does not depend on the
camera. However, roof edges are more complicated to detect
because the standard deviation of the noise of the gradient
of the image is higher than the standard deviation of the
image itself, and because typical noise removal filters create
false roof edges around jump edges.

Table 1 lists and briefly describes state-of-the-art edge
detectors specifically designed for range images. They are
grouped according to the underlying method used. The
table shows that almost all edge detectors for range images
can detect jump edges, but that only some can detect roof
edges. In this paper, we only consider locally continuous
surfaces and jump edges. Furthermore, we see that most
edge detectors were desgined and evaluated only for a
specific kind of range camera. Note that some edge detectors
were designed for high precision range scanners, such as
LIDARs, that have a very long acquisition time and cannot
be used for real time applications.

The next five paragraphs successively describe the five
types of edge detectors.

The edge detectors based on derivative operators detect
the peaks in the output of the derivative operator applied
to the images. Some edge detectors adapt common edge
detectors such as the Canny edge detector [7] or the Sobel
edge detector to the range image [25], [39]. Some others

detect the edges in a range image by detecting the edges
of a corresponding luminance image and then using the
range image to categorize the edges into jump, roof, or
luminance edges [6], [32]. Indeed, in luminance images,
edges usually appear at range or orientation discontinuities.
As the sampling grid from typical laser range scanners can
deviate from the rectangular grid used in images, Coleman
et al. [8] designed a method that, based on a finite element
framework, adapts differential operators to the irregular
sampling of the data.

The edge detectors based on residual analysis estimate
the image derivatives by using the difference between the
original image and a filtered version thereof [5], [22].

The edge detectors based on model fitting detect edges
by estimating how well a given local model, such as a
quadratic polynomial [17] or a third-order surface [29], fits
the data.

The edge detectors based on machine learning can be
categorized according to the machine learning algorithm
and the features they use. State of the art detectors have
used algorithms such as decision trees [34], support vec-
tor machine (SVM) [12], [31], structured forests [9], [13],
and convolutional neural networks (deep learning) [38].
Common features are the gradients of the depth computed
at different scales and orientations [9], the angle between
normals [13], the height of the pixel above the ground, and
the angle between the normal at the pixel and the direction
of gravity in the image [13], [34], [38].

The edge detectors based on statistical models use sta-
tistical tools to determine the edge probability. For exam-
ple, multiscale Markov random fields have been used to
extract jump and roof edges in both range and luminance
images [11]. Simple statistics have also been used to estimate
the likelihood that a pixel belongs to a jump edge [35].

3 PROBABILISTIC FRAMEWORK

Our framework assumes that the range images are captured
by cameras that can be modeled by the projective camera
model [14]; this is the case for ToF and SL cameras.

Because surfaces and edges involve, at the very least,
two points, the basis of our framework is built around the
probabilistic characterization of pairs of pixels in the range
image of interest. The pixels in a pair are generically denoted
by p and q. First, we treat the measured ranges zp and zq as
the realizations of corresponding RVs, Zp and Zq. Second,
we treat the “belonging or not” of the corresponding real
world points to the same surface as the realization of a
binary RV Gpq. More precisely, the sample space of Gpq

consists of the two elementary outcomes Spq, “the two
points belong to the same local and continuous real world
surface in the scene”, and Jpq, “the two points straddle a
jump edge”. With our definition, we intentionally exclude
roof edges since they are ill defined for just two pixels. Note
that, by definition, the elementary outcomes Spq and Jpq

are complementary, i.e. P (Spq) + P (Jpq) = 1.
Using this characterization, we decompose the joint

pdf fZp,Zq (zp, zq) by considering independently the cases
where the two corresponding real world points are on the
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Table 1
Comparison of a selection of edge detectors for range images. In the sixth column, “ToF” refers to time-of-flight cameras based on frequency

modulation, “SL” refers to real time structured light cameras such as the Kinect 1, “range scanners” refers to range cameras with a high precision
and a long acquisition time such as LIDARs, and “Synthetic” refers to the process of generating images from a 3D model with a computer.

Edge detectors Jump edges Roof edges Textured
required

Noise
adaptive

Cameras used in the
evaluation

Evaluation
Subjective Objective

Based on derivative filters
Lejeune et al. [25] Yes No No Yes SL, ToF No Yes
Schäfer et al. [32] Yes If in texture Yes No ToF No Yes
Cang Ye et al. [39] Yes No No No ToF No Yes
Coleman et al. [8] Yes Yes No No Synthetic Yes Yes
Buch et al. [6] If in texture If in texture Yes No SL No No

Based on residual analysis
Boulanger et al. [5] Yes Yes No No Range scanners No Yes
Krishnapuram et al. [22] Yes Yes No No Range scanners No Yes

Based on model fitting
Parvin et al. [29] Yes Yes No No Range scanners No Yes
Jiang et al. [17] Yes Yes No No Range scanners Yes Yes

Based on machine learning
Dollár et al. [9] Yes Yes No No Kinect 1 Yes Yes
Ren et al. [31] Yes If in texture No No Kinect 1 Yes Yes
Gupta et al. [13] Yes Yes No No Kinect 1 Yes Yes
Xie et al. [38] Yes Yes No No Kinect 1 Yes Yes
Silberman et al. [34] Yes If in texture Yes No Kinect 1 Yes Yes

Based on statistical models
Günsel et al. [11] Yes Yes No No Synthetic No Yes
Steder et al. [35] Yes No No No Range scanners No No
Present paper Yes Possibly No Yes Kinect 1, ToF Yes Yes

same surface (Spq) and where they are not (Jpq) by using
the law of total probability:

fZp,Zq (zp, zq) = fZp,Zq (zp, zq|S)πS +

fZp,Zq (zp, zq|J )πJ , (3)

where πS = P (S) and πJ = P (J ) are two probabilities,
commonly named priors, and where we dropped the sub-
script of Spq and Jpq; see Section 5 for a discussion on the
priors.

It is reasonable to assume that (1) the RV Zp is indepen-
dent of S or J , i.e. fZp (zp) = fZp (zp|S) = fZp (zp|J ), and
that, (2) the ranges of two pixels straddling an edge are in-
dependent, i.e. fZp,Zq (zp, zq|J ) = fZp (zp|J ) fZq (zq|J ).
Therefore, we have

fZp,Zq (zp, zq|J ) = fZp (zp) fZq (zq) (4)
fZp,Zq (zp, zq|S) = fZq (zq|zp,S) fZp (zp) . (5)

In order to derive analytic expressions for these two pdfs,
we decompose the measured range RV Zp into the RV Z̄p

representing the noiseless part of the measured range and
the RV Np representing its additive noise part: Zp = Z̄p +
Np.

Note that it is possible to learn the pdfs fZ̄q
(z̄q|z̄p,S)

and fZ̄p
(z̄p), instead of deriving analytic expressions. This

permits to tailor the distributions to cameras, scenes, or
applications, but requires a representative dataset and a time
consuming annotation process. A model based approach,
like ours, is more generic as long as the underlying assump-
tions are verified.

In Section 3.1, we formulate our main hypothesis and
challenge it against public databases of range images. In
Section 3.2, we derive analytic expressions for fZ̄q

(z̄q|z̄p,S)
and fZ̄p

(z̄p) for the noiseless part of the measured range. In
Section 3.3, we rework these expressions to include the noise
and to determine fZq (zq|zp,S) and fZp (zp). In Section

3.4, we derive the probability P (S|zp, zq) that, given their
ranges, the two real world points corresponding to the
pixels p and q are on the same real world surface. This
is the key for applying the framework to the special case of
edge detection.

3.1 Main hypothesis
Our main hypothesis about surfaces in range images is that
all surface orientations are equally probable in the physical
world. This may not be true for a single scene and camera
location and orientation because most surfaces in the real
world are aligned with the floor and the walls in a scene.
However, if we take into consideration all the possible
locations and orientations of the camera for a scene, our
hypothesis is acceptable.

To integrate our main hypothesis in the framework, we
first formalize the notion of surface orientation. Figure 3
shows the geometrical configuration of interest. The pixels
p and q in the image plane corresponds to points ~P and ~Q
in the real world, respectively. The ranges of ~P and ~Q with
respect to the optical center ~O are z̄p and z̄q, respectively.

Assuming that all surface orientations are equally prob-
able is equivalent to considering that the angle θ between
the direction from ~Q to ~P and the reference direction (lom

in Fig. 3) corresponding to the two pixels p and q in the
image plane is the realization of a RV Θ that is uniformly
distributed over [0, π], i.e. fΘ (θ) = 1/π.

In Fig. 4a, we plotted the histogram of the orientations
θ computed for every pair of horizontally and vertically
aligned pixels in range images contained in the RGB-D
SLAM Dataset [36] (3D Object Reconstruction category,
18913 images captured by a Kinect 1). We choose this par-
ticular dataset because images are captured with a moving
camera, so that the chance to cover a large spectrum of
orientation angles is higher. This histogram has a broad
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Figure 3. Geometrical configuration showing a pair of pixels p, q in the
image plane and their corresponding points ~P, ~Q in the real world.

(a) fΘ (θ) (b) fZp (zp)

Figure 4. (a) Comparison between the probability density function of
the surface orientation fΘ (θ) (shown as a continuous line) derived
from our assumption that all surface orientations are equally probable
in the real world, and the histogram of surface orientations estimated
from real world range images from the RGB-D SLAM Dataset [36]. (b)
Corresponding comparison for the pdf of range values fZp (zp).

plateau around π/2 spanning more than half of the possible
orientations. Therefore, we believe that our hypothesis of
a uniform pdf for the surface orientations is reasonable
for arbitrary scenes, and close to the pdfs observed for a
benchmarking dataset.

3.2 Determination of fZ̄q
(z̄q|z̄p,S) and fZ̄p

(z̄p)

Appendix A shows that, under the conditions of a projective
camera model and equiprobable orientations, the condi-
tional pdf fZ̄q

(z̄q|z̄p,S) is the Cauchy pdf

fZ̄q
(z̄q|z̄p,S) =

1

πz̄pspq

(
1 +

(
z̄q−z̄plpq

z̄pspq

)2
) , (6)

where lpq and spq are respectively the location and scale
parameters, as given in Appendix A.4. There, we also make
the important observation that lpq and spq are linearly
proportional to zp, and that they depend on the calibration
matrix K of the camera and the coordinates of the pixels p
and q.

The Cauchy pdf being fat-tailed, Eq. (6) shows that large
range differences on a surface are possible and that they do

not necessarily imply a jump edge. Moreover, because the
mean and variance of a Cauchy RV are undefined [28], any
surface model based on them is flawed. In particular, trying
to estimate them from a database of images is questionable,
to say the least. This emphasizes the importance of having
an analytic expression for the pdf of range values on sur-
faces. To the best of our knowledge, this is the first time that
an analytic expression is given for fZ̄q

(z̄q|z̄p,S). In [15],
fZ̄q

(z̄q|z̄p,S) is estimated experimentally by fitting range
values to a pdf that is “highly concentrated around 0”.

Let us now discuss fZ̄p
(z̄p). Without any knowledge

about the content of the scene, a reasonable form for
fZ̄p

(z̄p) is that of a uniform pdf. In our case, because of
the assumptions made to derive fZ̄q

(z̄q|z̄p,S), we have a
different pdf. Indeed, Bayes’ theorem leads to

fZ̄q
(z̄q|z̄p,S)

fZ̄p
(z̄p|z̄q,S)

=
fZ̄q

(z̄q)

fZ̄p
(z̄p)

. (7)

From Eq. (6), we can see that fZ̄q
(z̄q|z̄p,S) differs from

fZ̄p
(z̄p|z̄q,S). Algebraic developments, confirmed with the

help of the Mathematica software package, lead to

fZ̄q
(z̄q|z̄p,S)

fZ̄p
(z̄p|z̄q,S)

=
z̄p
z̄q

. (8)

Thus, fZ̄p
(z̄p) must take the form of a Reciprocal pdf, i.e.

fZ̄p
(z̄p) = Kz̄−1

p , where K is a normalizing constant to be
determined. For positive ranges comprised between zmin
and zmax, we have

fZ̄p
(z̄p) =

{
1

ln zmax−ln zmin
1
z̄p

if z̄p ∈ [zmin, zmax] ,

0 otherwise,
(9)

where lnx denotes the natural logarithm of x. The ranges
zmin and zmax can be set according to the camera specifica-
tions or computed for each range image.

While the pdf for fZ̄p
(z̄p) is identical for every pixel

in the image, the shape of the Reciprocal pdf means that
smaller ranges are more likely than large range values. This
is a consequence of the assumption that the orientations of
real world surfaces in the scene with respect to the line of
sight are equally probable. We show in Fig. 4b that this pdf
corresponds reasonably well to real world data.

Other authors have provided other expressions for
fZ̄p

(z̄p) but under different assumptions. In [21], Konishi et
al. learn the pdf over a database by computing a histogram
of the ranges from the neighborhood around the considered
pixel. In [15], Huang et al. use knowledge on the content of
the scene (forest scenes) to determine an analytic expression
for the pdf.

Interestingly, the inverse of a RV with a Cauchy pdf also
has a Cauchy pdf, and similarly for a RV with a Reciprocal
pdf. We explain in Section 4.1 that this is particularly useful
when dealing with planar surfaces, where using the inverse
range is more appropriate, as shown in [37].

3.3 Determination of fZq (zq|zp,S) and fZp (zp)

Until now, we have ignored the noise affecting range values.
As noted in Section 2.1.1, this noise can be modeled as an
additive Gaussian noise, expressed as Np ∼ N

(
0, σ2

p

)
for a

pixel p. Appendix A.5 shows that, if we combine the noise
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Figure 5. Each image shows, in false colors, and for the indicated
range camera, the value, at each pixel, of the parameter η that appears
in Eq. (47) of Appendix A.5 and indicates the weight of the Cauchy
pdf when one represents the Voigt pdf of fZq (zq|zp,S) as a linear
combination of a Cauchy pdf and a Gaussian pdf. The value shown at
a pixel q shows the value of η with p being immediately to the right of
q. The value of η varies across each image according to the local noise
level and the range at each pixel.

affecting p and q by taking σ2 = σ2
p + σ2

q, the conditional
pdf fZq (zq|zp,S) for noisy range values is the convolution
of a Cauchy pdf and a Gaussian pdf, which results in a
Voigt pdf. If the standard deviation of the noise is much
larger than the scale parameter of the Cauchy pdf, we can
approximate fZq (zq|zp,S) by a Gaussian pdf. Conversely,
if it is much smaller, we can approximate fZq (zq|zp,S)
by a Cauchy pdf. It is important to understand that the
shape of fZq (zq|zp,S) is non-uniform over a range image,
as illustrated in Fig. 5 for two range images.

Likewise, fZp (zp) is the convolution of fZ̄p
(z̄p) and a

Gaussian pdf. It is approximately equal to fZ̄p
(z̄p) since the

domain of possible range values is usually several orders of
magnitude larger than the standard deviation of the noise.

3.4 Determination of P (S|zp, zq)

We now determine the conditional probability P (S|zp, zq)
that, given the ranges of the two pixels p and q, their
corresponding real world points are on the same real world
surface. A variant of Bayes theorem [28] gives

P (S|zp, zq) =
fZq (zq|zp,S)πS

fZq (zq|zp,S)πS + fZq (zq)πJ
. (10)

One sees that fZq (zq|zp,S) and fZq (zq) both contribute
to P (S|zp, zq). The probability of the outcome J is
P (J |zp, zq) = 1 − P (S|zp, zq), since the two events are
complementary.

4 PROBABILISTIC MODEL FOR SURFACES IN THE
LOCAL NEIGHBORHOOD OF A PIXEL

So far, we have considered the geometrical relationship
between two real world points to determine an expression
for the joint pdf fZp,Zq (zp, zq) and to derive the probability
that the real world points corresponding to the two pixels
p and q are on the same surface (Spq) or straddle an edge
(Jpq). However, we can enhance our probabilistic model by
using more than two pixels. Because we intend to use the
framework for edge detection, we consider pixels that are

collinear in the range image. The purpose is to better iden-
tify the geometrical configuration (surface or edge) of the
real world points corresponding to p and q by considering
additional pixels along the line going through them. Below,
we simplify the notation by dropping the pdf subscripts, so
that we write, e.g., f (zp, zq).

Let us consider the N aligned and ordered pixels
p1, . . . ,pN defined as pi = p1+ai (pN − p1) with 0 < ai <
ai+1 < 1. The pdf f (z1, . . . , zN ) of the range value of these
N pixels can be expressed using the law of total probability
over the set of disjoint events representing the geometrical
configurations ci =

{
Spipi+1 ,Jpipi+1

}
, i = 1, . . . , N − 1,

between each pair of real world points corresponding to
successive pixels,

f (z1, . . . , zN ) =
∑
c1

P (c1)

∑
c2

P (c2)

 · · ·
∑
cN−1

P (cN−1) f (z1, . . . , zN |c1, . . . , cN−1)

 . (11)

There are in fact 2N−1 possible geometrical configurations
for all the real world points corresponding to the N pixels.
Consequently, there also are 2N−1 terms in the expression
for f (z1, . . . , zN ).

We can use the independence of the ranges
corresponding to different real world surfaces to
decompose the joint pdf f (z1, . . . , zN |c1, . . . , cN−1).
Specifically, when the geometrical configuration ci
is Jpipi+1 , we have f (z1, . . . , zN |c1, . . . , cN−1) =
f (z1, . . . , zi|c1, . . . , ci)f (zi+1, . . . , zN |ci+1, . . . , cN−1).
By applying this rule to all jump edge configurations, the
pdf f (z1, . . . , zN |c1, . . . , cN−1) is split into pdfs involving
ranges corresponding to the same real world surface. For
example, for N = 3, the marginalization of f (z1, z2, z3) has
four terms,

f (z1, z2, z3) =f (z1, z2, z3|Sp1p3
)P (Sp1p2

)P (Sp2p3
) +

f (z1, z2|Sp1p2
) f (z3)P (Sp1p2

)P (Jp2p3
) +

f (z1) f (z2, z3|Sp2p3
)P (Jp1p2

)P (Sp2p3
) +

f (z1) f (z2) f (z3)P (Jp1p2
)P (Jp2p3

) .
(12)

In Section 3.1, we obtained an expression for
f
(
zi, zi+1|Spipi+1

)
for subsets of two pixels. When

the subset contains more than two pixels, we have to
make one additional assumption about the underlying
surface. In Section 4.1, we provide an analytic expression
for f (z1, z2, z3|Sp1p3

) for the case where all surfaces
in the scene are planar surfaces, which is a reasonable
assumption locally. In Section 4.2, we derive the probability
P (Spq|zp, zq, zr) that the real world points corresponding
to the pixels p and q are on the same surface given their
range and the range of another pixel r located on the line
joining p and q.

4.1 Determination of f (z1, . . . , zN |Sp1pN )

While the real world coordinates of the points in a plane are
related by a linear equation, there is no linear relationship
between the coordinates of the corresponding pixels and
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their ranges. However, the inverse of the ranges are linearly
dependent on the pixel coordinates, as shown in [37]. Thus,
given two pixels pi and pj and their noiseless ranges z̄i
and z̄j , the range z̄k of any pixel pk (including pi and pj),
such that pk = pi + aijk (pj − pi), where aijk defines the
position of the pixel pk with respect to pi and pj , is related
to the other two ranges by z̄−1

k = z̄−1
i + aijk

(
z̄−1
j − z̄−1

i

)
.

For the set of N pixels pk, k = 1, . . . , N , we can write
the N such equations in the following matrix form

z̄−1 = Aβ̄ , (13)

where z̄−1 =
(
z̄−1

1 · · · z̄−1
i · · · z̄−1

N

)T
, β̄ =

(
z̄−1

1 z̄−1
N

)T
, and

A is the N × 2 matrix

A =


...

...
1− a1Ni a1Ni

...
...

 . (14)

It can be shown that the joint pdf of the noise on the
N inverse ranges z−1 is a multivariate Gaussian pdf with
zero mean vector and an N × N diagonal variance matrix
Σ = diag

( [
σ1/z

2
1

]2 · · ·
[
σN/z

2
N

]2 ). By combining
the pdf of the noise with Eq. (13), it can be shown that the
pdf of the inverse noisy ranges of N aligned and ordered
pixels corresponding to the same planar surface can be
approximated by

f
(
z−1|Sp1pN

)
=

(2π)
√

[Σ−1
ξ ]
−1
11

[Σξ]22

[ln zmax − ln zmin] ẑ−1
N

G
(
z−1; Aξ,Σ

)
V

(
ẑ−1

1 ; ẑ−1
N l1N ,

√
[Σ−1
ξ ]
−1
11

+ [Σξ]22, ẑ
−1
N s1N

)
, (15)

where Σξ =
(
ATΣ−1A

)−1
is the covariance matrix of

the estimator, [Σξ]ij is the element at row i and column
j of Σξ , G (x;µ, σ) is the Gaussian pdf at x with mean
µ and standard deviation σ, ξ =

(
ẑ−1

1 ẑ−1
N

)T
=(

ATΣ−1A
)−1

ATΣ−1z−1 is the maximum likelihood esti-
mator of the ranges at pixel p1 and pN given all N ranges,
and V

(
ẑ−1

1 ; · · ·
)

is the Voigt pdf as defined in Appendix
A.5. We note thatG

(
z−1; Aξ,Σ

)
is the maximum likelihood

of the planar model given the N ranges. Eq. (15) is an
important result because using more than two points allows
one to increase the precision and robustness.

By performing a standard change of RV, we obtain the
pdf for z = (z1 · · · zi · · · zN )

T (instead of for z−1),

f (z|S) =

(
N∏
i=1

1

z2
i

)
f
(
z−1|S

)
. (16)

4.2 Determination of P (Spq|zp, zq, zr)

In the previous section, we have obtained an expression for
the joint pdf for the ranges of more than two collinear pixels.
In the case of a planar surface model, this allows one to
calculate the probability of Spq by considering more than
two ranges, which should prove more robust. For example,
if we consider a third pixel r, we have

P (Spq|zp, zq, zr) =
f (zp, zq, zr|Spq)P (Spq)

f (zp, zq, zr)
, (17)

Spq,Spr

f
(z

p
,z

q
,z

r
|·
··
)

Spq,Jpr

+

f (zp, zq, zr|Spq)

×P(Spr)

×P(Jpr)

Jpq,Spr Jpq,Jpr

+

f (zp, zq, zr|Jpq)

×P(Spr)

×P(Jpr)

P (Spq|zp, zq)

P (Spq|zp, zq, zr)

Figure 6. Illustration of the procedure for combining the pdfs
f (zp, zq, zr| · · · ) of horizontally aligned pixels to produce the probability
map P (Spq|zp, zq) based on two ranges zpand zq, and the probability
map P (Spq|zp, zq, zr) based on three ranges zp, zq, and zr. The figure
shows that adding a third range leads to more edges being detected.
This is the basis for our edge detector.

where f (zp, zq, zr|Spq) is obtained using the law of to-
tal probability over the outcomes Sqr and Jqr, and
f (zp, zq, zr) over the four configurations (Spq,Sqr),
(Jpq,Sqr), (Spq,Jqr), and (Jpq,Jqr), as explained in Sec-
tion 4. In other words, we utilize the information provided
by zr for some pixel r in addition to that provided by p
and q to improve the P (Spq|.). Figure 6 illustrates the
decomposition of f (zp, zq, zr) using Eq. (12) and how its
terms can be combined to produce the probability maps
P (Spq|zp, zq, zr) and P (Spq|zp, zq). Observe that the ad-
dition of a third range provides additional edges.

In the following section, we present an algorithm that is
based on our probabilistic framework and that detects edges
in range images. This algorithm illustrates the underlying
mechanisms and proves the usefulness of our model for a
practical task.

5 APPLICATION TO EDGE DETECTION

We can perform edge detection by thresholding the surface
probability P (Spq| · · · ) for each pair of neighboring pixels
p and q using

Spq if P (Spq| · · · ) > τ , (18)
Jpq otherwhise, (19)

where τ is a detection threshold. In practice, at each pixel
p in the image, we say that there is an edge at p if
P (Spq| · · · ) ≤ τ for its horizontal neighbor q = p + (1, 0)
or its vertical neighbor q = p + (0, 1). The resulting edge
detector is referred to, below, as the Probabilistic Edge
Detector (PED).

We define three variants of the PED depending on the
number of pixels considered for estimating the surface
probability P (Spq| · · · ):
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• PED 0, which uses the two pixels p and q, and their
ranges zp and zq to determine P (Spq|zp, zq) defined
in Eq. (10),

• PED 1, which uses one additional pixel and its range,
and

• PED 2, which uses two additional pixels and their
ranges.

For PED 2, the two additional pixels are symmetrically taken
at the same distance from the center of mass of the two
pixels p and q, on each side of the line joining p and q. We
denote by o the pixel that is on the side of p, and by r the
pixel that is on the side of q. In mathematical terms, they are
defined by o = p + k (p− q) and r = q + k (q− p), where
k is a distance parameter. This allows the edge detector
to leverage the information provided by the planar surface
model even when there is an edge on only one side of the
line passing through p and q. For example, if there is a
jump edge between o and p, the range zr still contributes to
represent the local surface containing the real world points
corresponding to the pixels p, q, and r. The distance k
defines the size of the spatial support for the surface model.
This size is critical because, on the one hand, it has to be
small to accurately represent the local surface while, on the
other hand, it must be large enough to reduce the effect of
the noise and to increase the confidence in the planar surface
model.

For PED 1, we choose as the additional pixel either o or
r, favoring the point that is most likely on the same surface
as p and q. In practice, in order to avoid computing both
the probabilities P (Spr|zp, zq, zr) and P (Soq|zo, zp, zq), a
good rule of thumb is to choose the pixel the range of which
is the closest to zp and zq. Similarly to PED 2, this choice
allows the detector to leverage the information provided by
the planar surface model even when there is an edge on only
one side of p and q.

By construction, our technique detects edges that are at
least two pixels thick, with one pixel on each side of the
discontinuity. The detected edges are even thicker if there
is a veiled pixel at the discontinuity. However, in some
applications and when needed, it is possible to interpret the
role of a pair of edge pixels in different terms. Indeed, in a
pair of edge pixels, the pixel with the smallest range distance
most likely belongs to the inner border of a foreground
object, and the other to the background of the scene. Since
such interpretations are scene dependent, we ignore them
here.

PED 0 is directly based on two parameters, i.e. the prior
πJ = P (Jpq) and the detection threshold τ . In addition,
PED 1 and PED 2 also involve the priors P (Jop) and
P (Jqr), which can be estimated as follows. By definition,
P (Jop) = 1 − P (Sop). To estimate P (Sop), we should
remember that the pixels o and p are separated by a distance
k, so that there should be no edge between the k − 1
pairs of adjacent pixels in between o and p. Therefore,
P (Sop) = (1− πJ )

k−1, and

P (Jop) = P (Jqr) = 1− (1− πJ )
k−1 . (20)

The value of the edge prior πJ depends on the camera
type, the resolution of the range image, and the kind of
scene captured by the camera. It should thus be chosen or
estimated accordingly.

The threshold τ indicates how well the range values
must fit the surface model in order to tell whether the
real world points corresponding to the pixels p and q are
on the same surface. Using a larger τ value increases the
number of true edges, but also the number of edges falsely
declared to be true edges (false positives). A proper strategy
to determine τ consists in maximizing the accuracy while
keeping the number of false positives small.

6 EXPERIMENTAL RESULTS AND COMPARISON

In this section, we present two series of experiments. First,
we analyze the performance of our three PED edge detectors
defined in Section 5. Second, we compare them to a selected
set of state of the art edge detectors.

To evaluate the performance of all the edge detectors
considered, we follow the methodology of Arbelaez et al. [3],
which uses the precision-recall framework and defines three
indicators: (1) the ODS, which is the best F score (harmonic
mean of the precision and the recall) on the dataset using the
same set of parameters, (2) the OIS, which is the aggregate
F score obtained for the best set of parameters in each
image, and (3) the average precision AP, also called the area
under the precision-recall curve. The evaluation indicators
are made invariant to the width of the detected edges by
applying a standard edge thinning algorithm. When com-
puting the performance values, a small localization error
of the detected edge with respect to the ground truth is
tolerated to make the results more robust to an inexact
localization in the ground truth.

The series of experiments related to our PEDs use a
custom made dataset, hereafter referred to as the JUMP
dataset, containing manually annotated ground truth jump
edges for range images captured by three different range
cameras having different properties:
• Kinect 1 (structured light, resolution of 640×480 pixels),
• PMD CamCube 2.0 (single modulation frequency time-

of-flight, 204× 204 pixels),
• Microsoft Kinect 2 (multiple modulation frequency

time-of-flight, 512× 424 pixels).
We captured six images for each of these cameras. The
scenes captured in this dataset were designed to have a
large variety of jump edges. We preprocessed the images
from ToF cameras using a 3 × 3 median filter to remove a
significant “salt and pepper” noise and setting to zero the
pixels with amplitudes outside the validity zone (see Section
2.1.1), creating holes similar to those of the Kinect 1.

For the comparative study of our PEDs with the set of
state of the art detectors, we use the well established NYU
Depth Dataset (NYUD) [34]. We note that, while it is often
used, this dataset is not ideal for the evaluation of jump
edge detectors on range images. First, the edges delineate
semantic objects in the image and they may correspond to
a jump edge, a roof edge, or an edge in the RGB image.
Second, the dataset was captured using a single type of
range camera.

6.1 Analysis of the parameters of PEDs

The PEDs have five parameters: PED# (PED 1, 2 or 3), noise
factor κ, distance k, edge prior πJ , and threshold τ . The aim
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Table 2
Results of our edge detector for each camera used to produce our

JUMP dataset.

ODS OIS AP

Kinect 1
PED 0 .955 .964 .983
PED 1 .959 .970 .983
PED 2 .956 .968 .982

Kinect 2
PED 0 .946 .958 .985
PED 1 .959 .967 .985
PED 2 .966 .971 .994

CamCube
PED 0 .862 .887 .918
PED 1 .876 .895 .932
PED 2 .880 .902 .937

Kinect 1 Kinect 2 CamCube

D
ep

th
G

ro
un

d
tr

ut
h

PE
D

0
PE

D
1

PE
D

2

Figure 7. Edge detection results on our JUMP dataset. Black, red, and
green pixels represents the true positives, false positives, and false
negatives, respectively.

of this section is to analyze how these parameters influence
the performance of the detector and to provide a good set
of default parameters.

Table 2 reports the best performances obtained by exten-
sively searching the parameter space with the three versions
of the PED on our JUMP dataset. Figure 7 shows a few edge
detection results on this dataset.

Figure 8 shows a sensitivity analysis of each parameter
of the PED on the images of the Kinect 1 and Kinect 2.
When one parameter is tested, the value of each of the other
parameters is set to the value that gives the best ODS score
as shown in Table 2. We now analyze the results of Fig. 8 for
each parameter.

PED 1 and PED 2 (i.e. our edge detectors that considers a
planar surface model for a set of respectively three and four
pixels) outperforms PED 0 (i.e. our edge detector that only

Kinect 1 Kinect 2
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0.9

1.0

OD
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Figure 8. Influence of the parameters of the Probabilistic Edge Detector
(PED) on the performance (ODS, recall, and precision) for the Kinect 1
and Kinect 2 images from our custom JUMP dataset.

considers two pixels) for the Kinect 2 and PMD CamCube
2.0. This shows the importance of considering the ranges
of enough pixels to build a more precise surface model.
For the Kinect 1, the use of a surface model has a smaller
impact on the performance on our custom dataset but gives
a noticeable boost on the NYUD (see Table 3). We observe
that the difference in performance between PED 1 and PED 2
is small on our JUMP dataset. This may be because of how
we choose the third pixel in PED 1. However, we still expect
PED 2 to be more efficient on scenes where there are surfaces
that are very steep with respect to the camera.

For the noise factor κ, the best performances are reached
for values that are very close to the values we estimated,
experimentally, with the cameras (κKinect 1 ≈ 0.0015 and
κKinect 2 ≈ 12).

The best distance k at which to retrieve the additional
pixels is around 8 for the two cameras. A smaller value
increases the influence of the noise in Eq. (15) and a larger
value will increase the probability that the additional pixels
are not on the same surface.

The edge prior πJ has little influence on the performance
as long it is between 0.01 and 0.3. Its value on our JUMP
dataset is 0.028 for the Kinect 1 and 0.037 for the Kinect 2.

The threshold τ gives the best performance for values
around 0.5. It allows one to specify the trade off between
the precision and the recall: small values of τ give a high
precision and a low recall, while, for large values of τ , the
effect is opposite.
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Table 3
Best performance indicators obtained for each of the 12 edge detectors

on the NYU Depth Dataset. For the detectors based on machine
learning (Dollar, Gupta, and Xie), we duplicated the analysis by

considering a complete model learned on the NYU Depth Dataset
(“NYUD model”) or a jump edge model learned on the Kinect 1 images

of our custom JUMP dataset (“JUMP model”).

ODS OIS AP
Jiang [17] .447 .487 .574
Lejeune [25] .537 .568 .562
Sobel .490 .519 .560
Dollar [9] (NYUD model) .642 .655 .660
Gupta [13] (NYUD model) .640 .650 .660
Xie [38] (NYUD model) .682 .695 .702
Dollar [9] (JUMP model) .519 .529 .389
Gupta [13] (JUMP model) .541 .561 .507
Xie [38] (JUMP model) .341 .349 .123
PED 0 .502 .504 .705
PED 1 .554 .577 .614
PED 2 .541 .569 .595

Our conclusion is that a good default choice would be to
take the PED 1 with a noise factor measured experimentally
for the camera, and the following parameter set: k = 8,
πJ = 0.1, and τ = 0.5.

The processing times of the PED 0, 1, and 2 on
a Microsoft Kinect 1 image (VGA resolution) are re-
spectively 30ms, 115ms, and 230ms on a Intel(R)
Core(TM) i7-4500U for the C++ implementation provided
at www.telecom.ulg.ac.be/range-model.

6.2 Comparative study

Table 3 gives the performance of the three versions of PED
and the edge detectors of Jiang [17] (jump edge only),
Lejeune [25], Sobel, Dollar [9], Gupta [13], and Xie [38] on
NYUD. We use the same matching tolerance of 1.1% of the
size of the image diagonal as done in [9], [13], [38]. Figure 9
shows edge detection results for a representative selection
of images and detectors.

The results of Table 3 were obtained for the three PEDs,
Jiang, Lejeune, and Sobel by extensively searching each of
their parameter space to reach the maximum scores. The
Jiang and Sobel edge detector were modified to take into
account the per-pixel noise as discussed in Section 2.1.1. The
results for the machine learning based edge detectors (Dol-
lar, Gupta, and Xie) are given for a full model (jump/roof
edges) learned on NYUD (depth only, train/test separation
identical to that of [13]) and for a jump edge model learned
on the Kinect 1 images of our JUMP dataset.

We can see that the machine learning based edge de-
tectors with a full model learned on NYUD outperform
all other detectors. Indeed, they detect a large number
of roof edges present in the ground truth that the other
detectors do not detect. However, when machine learning
based detectors are trained on a jump edge model only, their
performance is below that of PED 1. It also appears that the
Xie edge detector is subject to underfitting or overfitting
since it achieves poor results with the jump edge model.
The Jiang and Sobel edge detectors are the worst performing
detectors in this evaluation.

With respect to the PEDs, we see that PED 1 and PED
2 always perform better than PED 0. This shows the im-
portance of considering some surface model on a neighbor-
hood to achieve good detection. We think that additional
improvements could be made by considering more pixels
and/or using a double thresholding scheme such as in [7],
[25].

In summary, we see that jump edge detectors using a
model based approach built on our framework are efficient,
especially when we consider more than two pixels and
a surface model. Moreover, our framework can be used
with other range cameras with little effort, whereas machine
learning based approaches require the time consuming task
of building a representative dataset for each type of camera.

7 CONCLUSION

Range images directly reflects the geometrical structure of
the corresponding real world scene. This makes the interpre-
tation and the analysis of this scene from range image more
straightforward than from classic intensity images. In this
work, we studied the link between the range data and the
image acquisition process to obtain a powerful probabilistic
framework for processing range images.

First, we derived an analytic expression for the pdf of
range values when the corresponding points of the scene
belong to the same surface. Using the assumption that all
surface orientations are equally probable, we established
that range values follow a Voigt pdf. This conclusion is
consistent with previous empirical observations for the pdf
of range values, i.e. a high peak and a large tail. We extended
our probabilistic model to characterize the probability that
sets of collinear pixels are sampled from the same planar
surface in the scene. We proved that the expression for the
pdf of the ranges of a set of collinear pixels is the maximum
likelihood of the planar model weighted by a Voigt pdf.

Second, we designed a jump edge detector to illustrate
an application of our framework and to analyze the influ-
ence of its parameters in a real use case. Our Probabilistic
Edge Detector (PED) has good performances compared to
state of the art detectors, including machine learning based
detectors. These results are a consequence of the intrinsic
capability of our probabilistic framework to adapt the de-
tector to the local noise and to consider a more complex
surface model while rejecting regions that provide a poor
description of the local surface.

More generally, we developed our framework for range
images to express the notion of edges and surfaces in a
probabilistic manner. We think that our model based frame-
work could be used for various image processing tasks
on range images such as noise filtering and segmentation,
and in association with machine learning based methods by
building probabilistic features.

Our custom, annotated JUMP dataset, source
code, and illustrative results are publicly available at
www.telecom.ulg.ac.be/range-model.
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Figure 9. Edge detection results on the NYU Depth Dataset. The shown edge images were generated for the parameters maximizing the ODS
score. Black, red, and green pixels represent the true positives, false positives, and false negatives, respectively.

APPENDIX A
CONDITIONAL PROBABILITY DENSITY FUNCTION OF
RANGE VALUES ON SURFACE

A.1 Background and notations

Consider the configuration shown in Fig. 3. Our goal is to
find a geometrical relationship between the exact ranges z̄p
and z̄q and the signed angle θ between (1) the direction
from ~Q to ~P and (2) the reference direction lom related to
the pixels p and q corresponding to ~P and ~Q.

To do so, it is convenient to use the normalized (signed)

range difference

δzpq =
z̄p − z̄q
z̄p + z̄q

. (21)

We also introduce the pixel m = (p + q) /2, which is
midway between p and q in the image plane.

We express ~P as the 3D vector (x3D
p , y3D

p , z̄p)T , and p

as the 2D vector
(
x2D

p , y2D
p

)T
, which we also express in

homogeneous coordinates as the vector p̃ = (x2D
p , y2D

p , 1)T .
Corresponding coordinates in the real world and in the
image plane are related by ~P = z̄pK

−1p̃, where K is
the camera calibration matrix. If K is not provided by the
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manufacturer, then one must calibrate the camera, e.g. using
the technique of [14].

Next, we define the two vectors forming the angle θ. The
first, tpq, characterizes the direction from ~Q to ~P, and is
defined as

tpq =
~P− ~Q
z̄p + z̄q

. (22)

By simple algebra, we can also express tpq in terms of p̃ and
q̃,

tpq = K−1

(
δzpq

(
p̃ + q̃

2

)
+

(
p̃− q̃

2

))
. (23)

The second, lom, characterizes the direction from the optical
center ~O of the camera to m in the image plane, and is
defined as

lom = K−1m̃ with m̃ =
p̃ + q̃

2
. (24)

It should be clear that lom is the point along the segment
~Om at unit range. It is not necessarily a unit vector.. The
vector tpq can also be conveniently expressed using lom

as tpq = δzpqlom + dpq, where dpq = K−1 (p̃− q̃) /2 is
defined quite similarly to lom.

It should be clear that the useful range of θ is limited to
[0, π].

A.2 Geometrical relation between δzpq and θ

Since θ is the angle between lom and tpq, we have

tpq ◦ lom

‖tpq‖ ‖lom‖
= cos θ, (25)

where ◦ denotes the scalar product, and ‖.‖ the norm. Our
goal is to turn Eq. (25) into an equation for δzpq, and then to
solve this equation for δzpq, yielding an expression for δzpq

in terms of θ and parameters that are fixed for a given pair
of pixels p and q.

By squaring both sides of Eq. (25), we get, after some
straightforward manipulations,

δz2
pq + 2

lom ◦ dpq

‖lom‖2
δzpq −

‖dpq‖2

‖lom‖2
cot2 θ+

(lom ◦ dpq)
2

‖lom‖4
1

sin2 θ
= 0 . (26)

This is obviously a second order equation for δzpq. The
solutions of this equation are found to be given by

δzpq = apq ± bpq cot θ, (27)

where 
apq = − lom◦dpq

‖lom‖2

bpq =

√
‖dpq‖2

‖lom‖2
− a2

pq.
(28)

We now examine whether both expressions for Eq. (27) are
meaningful. Let us rewrite this equation as δzpq − apq =
±bpq cot θ. After some straightforward algebra, we can ex-
press it as

tpq ◦ lom

‖lom‖2
= ±bpq cot θ . (29)

From Fig. 3, one sees that tpq◦lom and cot θ always have the
same sign. Therefore, since bpq ≥ 0, we must only keep the
“+” sign in the last expression, and thus in Eq. (27), which
thus reduces to

δzpq = apq + bpq cot θ . (30)

A.3 Probability density function of ∆Zpq

At this point, we treat the above deterministic θ and δzpq as
realizations of random variables (RVs) respectively denoted
by Θ and ∆Zpq. The relation between these two RVs is
given by Eq. (30), rewritten here as

∆Zpq = apq + bpq cot Θ . (31)

This is usefully viewed as a change of RV, from Θ to
∆Zpq. The pdf for ∆Zpq can thus be expressed in terms of
the pdf for Θ via the standard expression [28]

f∆Zpq (δzpq) = fΘ (θ)|θ=g−1(δzpq)

∣∣∣∣ d

dδzpq
g−1 (δzpq)

∣∣∣∣ ,

(32)
where

δzpq = g (θ) = apq + bpq cot θ, and (33)

θ = g−1 (δzpq) = cot−1 δzpq − apq

bpq
. (34)

After some straightforward algebra, we get

f∆Zpq (δzpq) = fΘ

(
cot−1 δzpq − apq

bpq

)
bpq[

b2pq + (δzpq − apq)
2
] . (35)

This result is valid for any pdf for Θ.
In the special case that is of interest here, i.e. where Θ is

uniformly distributed between 0 and π, Eq. (35) reduces to

f∆Zpq (δzpq) =
1

π

bpq[
b2pq + (δzpq − apq)

2
] . (36)

The pdf f∆Zpq (δzpq) is recognized as being a Cauchy pdf,
also called Lorentzian pdf, denoted by C (δzpq; apq, bpq).

A.4 Probability density function of Z̄q for a fixed z̄p
By solving Eq. (21) for z̄q, we get

z̄q =
1− δzpq

1 + δzpq
z̄p . (37)

At this point, we treat the above deterministic z̄q and δzpq

as realizations of RVs respectively denoted by Z̄q and ∆Zpq.
Note that we continue to treat z̄p as a deterministic quantity
(later, we will treat it as a realization of a RV Z̄p). The
relation between these two RVs is given by Eq. (37) rewritten
here as

Z̄q =
1−∆Zpq

1 + ∆Zpq
z̄p . (38)

This is usefully viewed as a change of RV, from ∆Zpq to
Z̄q. The pdf for Z̄q can thus be expressed in terms of the pdf
for ∆Zpq via

fZ̄q
(z̄q) = f∆Zpq (δzpq)

∣∣
δzpq=g−1(z̄q)

∣∣∣∣ ∂∂z̄q g−1 (z̄q)

∣∣∣∣ , (39)
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where
δzpq = g−1 (z̄q) =

z̄p − z̄q
z̄p + z̄q

. (40)

After some long, but straightforward algebra, we get

fZ̄q
(z̄q) =

1

π

z̄pspq

(z̄q − z̄plpq)
2

+ (z̄pspq)
2 , (41)

with

lpq =

(
1− a2

pq − b2pq

)
1 + a2

pq + b2pq + 2apq
(42)

spq =
2bpq

1 + a2
pq + b2pq + 2apq

. (43)

The pdf fZ̄q
(z̄q) is recognized as being a Cauchy (or

Lorentzian) pdf. It is interesting and remarkable that the
change of RV (38) preserved the general nature of the pdf,
i.e. Cauchy.

It is important to note that lpq and spq only depend on
the calibration matrix K of the camera, and on the location
of the two pixels p and q.

A.5 Probability density function of Z̄q perturbed by
additive Gaussian noise Nq

Above, we were led to treat the range z̄q as a RV as a
way to take into account the many possible orientations θ
of the vector ~PQ with respect to the reference orientation
lom corresponding to the two pixels p and q in the image
plane.

At this point, we wish to consider the noise that affects
the measurements of zq by the camera. We model this noise
as an additive Gaussian noise. We thus consider the new RV
Zq = Z̄q +Nq, where Z̄q is the RV considered earlier, with
pdf given by Eq. (41), and Nq is the Gaussian RV with a
zero mean and a variance σ2 = σ2

q, i.e. N
(
0, σ2

)
, with pdf

fNq (nq) = G (nq; 0, σ) =
1

σ
√

2π
e−

n2
q

2σ2 . (44)

The pdf of Zq is thus the convolution of fZq (zq) and
fNq (zq),

fZq (zq) = fZq (zq) ∗ fNq (zq) , (45)

where ∗ denotes the convolution operation. From the do-
main of spectral line broadening in physics [16], it is
well known that the convolution of a Cauchy profile and
a Gaussian profile is a Voigt profile. For the Cauchy
pdf C (zq; z̄plpq, z̄pspq) of Eq. (36) and Gaussian pdf
G (zq; 0, σ) of Eq. (44), the corresponding Voigt pdf, denoted
by V (zq; z̄plpq, z̄pspq, σ), is given by

V (zq; z̄plpq, z̄pspq, σ) = C (zq; z̄plpq, z̄pspq) ∗G (zq;σ) .
(46)

Analytically, one generally expresses the Voigt pdf in
terms of the Faddeeva function [1]. In practice, we use an
approximation of V called the pseudo-Voigt function Vp,
consisting of some linear combination of a Cauchy pdf and
a Gaussian pdf

Vp (zq) = ηC (zq; z̄plpq,ΓV ) +

(1− η)G
(
z′q; z̄plpq,ΓV

)
, (47)

where ΓV and η are functions of σ and z̄pspq [16]. Note that
we are considering that zq is affected by noise, but that z̄p
is still fixed and exact. If we also want to consider the noise
affecting the measured range zp, we must introduce a new
Gaussian RV Zp = z̄p+Np where Np is a Gaussian RV with
zero mean and variance σ2

p and, then, the RV Zq is defined
by

Zq =
1−∆Zpq

1 + ∆Zpq
(z̄p +Np) +Nq , (48)

which would lead to a new and much more difficult prob-
lem since the first term on the right-hand side no longer
follows a Cauchy pdf.

In practice, because |δzpq| � 1, we use the approxi-
mation Zq ≈ [(1−∆Zpq) / (1 + ∆Zpq)] zp + Np + Nq.
If Np and Nq are uncorrelated, then the variance σ2 of
Np + Nq is σ2

p + σ2
q. Then, the pdf fZq (zq) that takes into

account the noise on both zp and zq is also a Voigt pdf with
σ2 = σ2

p + σ2
q. We have experimentally observed that this

leads to an excellent approximation of fZq (zq).

REFERENCES

[1] M. Abramowitz and I. Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical tables. Dover Publications,
1964.

[2] M. Adams. Amplitude modulated optical range data analysis in
mobile robotics. In IEEE Int. Conf. Robot. Autom. (ICRA), volume 2,
pages 8–13, May 1993.

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection
and hierarchical image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 33(5):898–916, May 2011.

[4] F. Blais. Review of 20 years of range sensor development. Journal
of Electronic Imaging, 13(1):231–243, Jan. 2004.

[5] P. Boulanger, F. Blais, and P. Cohen. Detection of depth and
orientation discontinuities in range images using mathematical
morphology. In IEEE Int. Conf. Pattern Recogn. (ICPR), volume 1,
pages 729–732, June 1990.

[6] A. Buch, J. Jessen, D. Kraft, T. Savarimuthu, and N. Krüger.
Extended 3D line segments from RGB-D data for pose estimation.
In Scandinavian Conf. Image Anal. (SCIA), volume 7944, pages 54–
65, Espoo, Finland, June 2013.

[7] J. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–698, Nov. 1986.

[8] S. Coleman, B. Scotney, and S. Suganthan. Edge detecting for
range data using Laplacian operators. IEEE Trans. Image Process.,
19(11):2814–2824, Nov. 2010.

[9] P. Dollar and L. Zitnick. Fast edge detection using structured
forests. IEEE Trans. Pattern Anal. Mach. Intell., 37(8):1558–1570,
Aug. 2015.

[10] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli. Depth
mapping using projected patterns, 2010. US Patent Publication
number 20100118123.

[11] B. Günsel, A. Jain, and E. Panayirci. Reconstruction and boundary
detection of range and intensity images using multiscale MRF
representations. Comp. Vision and Image Understanding, 63(2):353–
366, Mar. 1996.

[12] S. Gupta, P. Arbeláez, and J. Malik. Perceptual organization and
recognition of indoor scenes from RGB-D images. In IEEE Int.
Conf. Comput. Vision and Pattern Recogn. (CVPR), pages 564–571,
Portland, Oregon, USA, June 2013.

[13] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich fea-
tures from RGB-D images for object detection and segmentation.
In Eur. Conf. Comput. Vision (ECCV), Sept. 2014.

[14] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

[15] J. Huang, A. Lee, and D. Mumford. Statistics of range images.
In IEEE Int. Conf. Comput. Vision and Pattern Recogn. (CVPR),
volume 1, pages 324–331, Hilton Head Island, SC, USA, June 2000.

[16] T. Ida, M. Ando, and H. Toraya. Extended pseudo-Voigt function
for approximating the Voigt profile. Journal of Applied Crystallogra-
phy, 33(6):1311–1316, Dec. 2000.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, JULY 2017 14

[17] X. Jiang and H. Bunke. Edge detection in range images based on
scan line approximation. Comp. Vision and Image Understanding,
73(2):183–199, Feb. 1999.

[18] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A
stereo machine for video-rate dense depth mapping and its new
applications. In IEEE Int. Conf. Comput. Vision and Pattern Recogn.
(CVPR), pages 196–202, June 1996.

[19] C. Kerl, M. Souiai, J. Sturm, and D. Cremers. Towards
illumination-invariant 3D reconstruction using ToF RGB-D cam-
eras. In Int. Conf. 3D Vision (3DV), volume 1, pages 39–46, Tokyo,
Japan, Dec. 2014.

[20] K. Khoshelham. Accuracy analysis of Kinect depth data. Int.
Archives of the Photogrammetry, Remote Sens. and Spatial Inform. Sci.
(ISPRS), XXXVIII-5/W12:133–138, 2011.

[21] S. Konishi, A. Yuille, J. Coughlan, and S. Zhu. Statistical edge
detection: Learning and evaluating edge cues. IEEE Trans. Pattern
Anal. Mach. Intell., 25(1):57–74, Jan. 2003.

[22] R. Krishnapuram and S. Gupta. Morphological methods for
detection and classification of edges in range images. J. Math.
Imaging and Vision, 2(4):351–375, Nov. 1992.

[23] R. Lange and P. Seitz. Solid-state time-of-flight range camera. IEEE
J. Quantum Electron., 37(3):390–397, Mar. 2001.

[24] A. Lee, D. Mumford, and J. Huang. Occlusion models for natural
images: A statistical study of a scale-invariant dead leaves model.
Int. J. Comp. Vision, 41(1-2):35–59, Jan. 2001.

[25] A. Lejeune, S. Piérard, M. Van Droogenbroeck, and J. Verly. A new
jump edge detection method for 3D cameras. In IEEE Int. Conf. 3D
Imaging (IC3D), pages 1–7, Liège, Belgium, Dec. 2011.

[26] M. Lindner, I. Schiller, A. Kolb, and R. Koch. Time-of-Flight sensor
calibration for accurate range sensing. Comp. Vision and Image
Understanding, 114(12):1318–1328, Dec. 2010.

[27] F. Mufti and R. Mahony. Statistical analysis of signal measurement
in time-of-flight cameras. ISPRS J. Photogrammetry and Remote
Sens., 66(5):720–731, Sept. 2011.

[28] A. Papoulis. Probability, random variables, and stochastic processes.
McGraw-Hill, 1991.

[29] B. Parvin and G. Medioni. Adaptive multiscale feature extraction
from range data. Comp. Vision, Graph., and Image Process., 45(3):346–
356, Mar. 1989.

[30] H. Rapp, M. Frank, F. Hamprecht, and B. Jahne. A theoretical and
experimental investigation of the systematic errors and statistical
uncertainties of time-of-flight-cameras. Int. J. Intell. Syst. Techn. and
Appl., 5(3/4):402–413, Nov. 2008.

[31] X. Ren and L. Bo. Discriminatively trained sparse code gradients
for contour detection. In Adv. in Neural Inform. Process. Syst. (NIPS),
pages 584–592, Dec. 2012.

[32] H. Schafer, F. Lenzen, and C. Garbe. Depth and intensity based
edge detection in time-of-flight images. In Int. Conf. 3D Vision
(3DV), pages 111–118, Seattle, WA, USA, June 2013.

[33] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In IEEE Int.
Conf. Comput. Vision and Pattern Recogn. (CVPR), pages 1297–1304,
Providence, RI, USA, June 2011.

[34] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmen-
tation and support inference from RGBD images. In Eur. Conf.
Comput. Vision (ECCV), volume 7576 of Lecture Notes Comp. Sci.,
pages 746–760, Firenze, Italy, Oct. 2012.

[35] B. Steder, R. Rusu, K. Konolige, and W. Burgard. Point feature
extraction on 3D range scans taking into account object bound-
aries. In IEEE Int. Conf. Robot. Autom. (ICRA), pages 2601–2608,
Shanghai, China, May 2011.

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In IEEE/RSJ
Int. Conf. Intell. Robots and Syst. (IROS), pages 573–580, Vilamoura,
Portugal, Oct. 2012.

[37] T. Tang, W. Lui, and W. Li. A lightweight approach to 6-DOF
plane-based egomotion estimation using inverse depth. In Aus-
tralasian Conf. Robot. and Autom. (ACRA), pages 1–10, Melbourne,
Australia, Dec. 2011.

[38] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE Int.
Conf. Comput. Vision (ICCV), pages 1395–1403, Santiago, Chile, Dec.
2015.

[39] C. Ye and G. Hegde. Robust edge extraction for SwissRanger SR-
3000 range images. In IEEE Int. Conf. Robot. Autom. (ICRA), pages
2437–2442, Kobe, Japan, May 2009.

Antoine Lejeune received a Master degree in
engineering from the École Centrale Paris in
2009 and a Master degree in computer science
and engineering from the University of Liège
in 2010. Since then, he has been pursuing his
doctoral degree at the University of Liège. His
interests include image processing, computer vi-
sion, 3D vision, and machine learning.

Jacques G. Verly received the Ingénieur Élec-
tronicien degree from University of Liège, Bel-
gium. Sponsored by the Belgian American Ed-
ucational Foundation (BAEF), he attended Stan-
ford University, where he received the M.S. and
Ph.D. degrees in electrical engineering. From
1980 to 2000, he was at MIT Lincoln Laboratory,
doing research in many areas, including sig-
nal processing, image processing, and computer
vision for several imaging sensors (visible, IR,
laser radar, SAR). Since 2000, he has been a

full professor in the Department of EECS of the University of Liège.
He is a founder of the Laboratory for Signal and Image Exploitation
(INTELSIG). He has been the Vice-Dean of the School of Engineering.
His latest research areas are 3D/stereography, drowsiness monitoring,
and nanosatellites. He is the instigator of the world leading events
3D Stereo MEDIA, now called Stereopsia and “World Immersive Fo-
rum”, and SomnoSafe. He is the initiator of the educational OUFTI-1
nanosatellite, the first 100% Belgian satellite. He is a co-founder of the
Phasya company, specialized in drowsiness monitoring. In 2003-2004,
he held one of the two prestigious Francqui Chairs at Université Libre de
Bruxelles (ULB). He has over 360 publications and 2 US patents. He is
a CRB Fellow of the BAEF.

Marc Van Droogenbroeck received the degree
in Electrical Engineering and the Ph.D. degree
from the University of Louvain (UCL, Belgium),
in 1990 and 1994, respectively. While working to-
ward the Ph.D. he spent two years with the Cen-
ter of Mathematical Morphology (CMM), School
of Mines of Paris, Fontainebleau, France. In April
1994, he joined the New Development Depart-
ment of Belgacom. He was the Head of the Bel-
gian Delegation within the ISO/MPEG Commit-
tee and served as a Representative to the World

Wide Web Consortium for two years. In 2003, he was a Visiting Scientist
at CSIRO, Sydney, Australia. Since 1998, he has been a Member of the
Faculty of Applied Sciences at the University of Liège, Belgium, where
he is currently a Professor. His current interests include computer vision,
3D vision, machine learning, real time processing, motion analysis, gait
analysis, telecommunications, positioning, and robotics.


	Introduction
	State-of-the-art
	Statistics of range images
	Noise model for range cameras

	Surfaces and edges in range images

	Probabilistic framework 
	Main hypothesis
	Determination of [q]q"026A30C p,S and [p]p 
	Determination of [Zq]zq"026A30C zp,S and [Zp]zp 
	Determination of P(S"026A30C zp,zq)

	Probabilistic model for surfaces in the local neighborhood of a pixel
	Determination of z1,…,zN"026A30C Sp1pN
	Determination of P(Spq"026A30C zp,zq,zr)

	Application to edge detection
	Experimental results and comparison
	Analysis of the parameters of PEDs
	Comparative study

	Conclusion
	Appendix A: Conditional probability density function of range values on surface
	Background and notations
	Geometrical relation between zpq and 
	Probability density function of Zpq
	Probability density function of q for a fixed p
	Probability density function of q perturbed by additive Gaussian noise Nq

	References
	Biographies
	Antoine Lejeune
	Jacques G. Verly
	Marc Van Droogenbroeck


