Space-borne far ultraviolet spectral imager; Imaging the Earth’s atmosphere/ionosphere; Instrument for observing the upper atmosphere
Abstract :
[en] ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives
by providing remote sensing measurements of the daytime and nighttime atmosphere/
ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude
profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157
nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions
of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission
of O+ ions used to compute the nighttime ionospheric altitude distribution. ICON Far Ultra-
Violet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits
and corresponding back imager cameras that produce two independent images in separate
wavelength bands on two detectors. All observations will be processed as limb altitude profiles.
In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude
spatial maps to obtain images of ion distributions around regions of equatorial spread F. The
ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror
that allows the field of view to be steered up to 30 degrees forward and aft, to keep the
local magnetic meridian in the field of view. The detectors are micro channel plate (MCP)
intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices
(CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD
noise and the rapidly scanned frames are co-added to digitally create 12-second integrated
images. Digital on-board signal processing is used to compensate for geometric distortion
and satellite motion and to achieve data compression. The instrument was originally aligned
in visible light by using a special grating and visible cameras. Final alignment, functional
and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design
requirements and is ready to be launched on the ICON spacecraft.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Mende, Stephen; Berkeley University of California - UC Berkeley > Space Science Laboratory
Frey, Harald; Berkeley University of California - UC Berkeley > Space science Laboratory
Rider, Kodi; Berkeley University of California - UC Berkeley > Space Science Laboratory
Chou, Cathy; Berkeley University of California - UC Berkeley > Space Science Laboratory
Harris, Stue; Berkeley University of California - UC Berkeley > Space Science Laboratory
Siegmund, Oswald; Berkeley University of California - UC Berkeley
England, Scott; Berkeley University of California - UC Berkeley > Space Science Laboratory
Craig, William; Berkeley University of California - UC Berkeley > Space science Laboratory
Immel, Thomas; Berkeley University of California - UC Berkeley > Space Science Laboratory
Turin, Paul; Berkeley University of California - UC Berkeley > Space Scien Laboratory
Darling, N.; Berkeley University of California - UC Berkeley > Space science laboratory
Loicq, Jerôme ; Université de Liège > CSL (Centre Spatial de Liège)
Blain, Pascal ; Université de Liège > CSL (Centre Spatial de Liège)
Syrstad, E.; Utah State University > Space Dynamics Lab
Thompson, B.; Utah State University > Space Dynamics Lab.
Burt, R.; Utah State University > Space Dynamics Lab
Champagne, J.; Utah State University > Space Dynamics Lab.
Sevilla, P.; Utah State University > Space Dynamics Lab
C.D. Anger, S.K. Babey, A.L. Broadfoot, R.G. Brown, L.L. Cogger, R. Gattinger, J.W. Haslett, R.A. King, D.J. McEwen, J.S. Murphree, E.H. Richardson, B.R. Sandel, K. Smith, A.V. Jones, An ultraviolet auroral imager for the Viking spacecraft. Geophys. Res. Lett. 14, 387 (1987)
D.R. Austin, T. Witting, I.A. Walmsley, Broadband astigmatism-free Czerny–Turner imaging spectrometer using spherical mirrors. Appl. Opt. 48, 3846 (2009). doi:10.1364/AO.48.003846
C.A. Barth, S. Schaffner, Ogo4 spectrometer measurements of the tropical ultraviolet airglow. J. Geophys. Res. 75, 4299–4306 (1970)
B. Bates, M. McDowell, A.C. Newton, Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination. J. Phys. E, Sci. Instrum. 3, 206–210 (1970)
P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y.G. Stockman, C. Chou, H.U. Frey, K. Rider, S.B. Mende, J.J.D. Loicq, VUV optical ground system equipment and its application to the ICON FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016)
J. Champagne, Design and characterization of the CCD detector assemblies for ICON FUV, in AGU Fall Meeting (AGU, Washington, 2015)
A.B. Christensen, L.J. Paxton, S. Avery et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108(A12), 1451 (2003). doi:10.1029/2003JA009918
A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108 (SIA 16-1), 1451 (2003). doi:10.1029/2003JA009918
J. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007). doi:10.1029/2005RS003348
M. Czerny, A. Turner, Über den Astigmatismus bei Spiegelspektrometern. Z. Phys. A 61, 792–797 (1930)
M.L. Dalton, Astigmatism compensation in the Czerny–Turner spectrometer. Appl. Opt. 5, 1121–1123 (1966). doi:10.1364/AO.5.001121
L.A. Frank, J.D. Craven, Imaging results from dynamics explorer 1. Rev. Geophys. 2, 249 (1988)
L.A. Frank, J.D. Craven, K.L. Ackerson, M.R. English, R.H. Eather, R.L. Carovillano, Global auroral imaging instrumentation for the dynamics explorer mission. Space Sci. Instrum. 5, 369–393 (1981)
W.B. Hanson, A comparison of the oxygen ion-ion neutralization and radiative recombination mechanisms for producing the ultraviolet nightglow. J. Geophys. Res. 75, 4343–4346 (1970). doi:10.1029/JA075i022p04343
G.T. Hicks, T.A. Chubb, Equatorial aurora/airglow in the far ultra-violet. J. Geophys. Res. 75, 6233–6248 (1970)
J.D. Huba, K.F. Dymond, G. Joyce, A.A. Budzien, S.E. Thonnard, J.A. Fedder, R.P. McCoy, Comparison of O + demsity from ARGOSLORAAS data analysis and SAMI2 model results. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013089
T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Gèrard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, M.H. Stevens, The ionospheric connection explorer mission: mission goals and design. Space Sci. Rev. (2017)
T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi:10.1029/2006GL026161
F. Kamalabadi, J.M. Comberiate, M.J. Taylor, P.-D. Pautet, Estimation of electron densities in the lower thermosphere from GUVI 135.6 nm tomographic inversions in support of SpreadFEx. Ann. Geophys. 27, 2439–2448 (2009). doi:10.5194/angeo-27-2439-2009
F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the far ultraviolet imager onboard the ionospheric connection explorer. Space Sci. Rev. (2017)
J. Loicq, C. Kintziger, A. Mazzoli, T. Miller, C. Chou, T. Immel, H. Frey, S. Mende, Optical design and optical properties of a VUV spectrographic imager for ICON mission. Proc. SPIE 9905, 990507 (2016a)
J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, C. Chou, H. Frey, K. Rider, S. Mende, VUV optical ground system equipment and its application to the ICON-FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016b)
J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, L. Clermont, C. Chou, C. Popette, H. Frey, K. Rider, S. Mende, Alignment and calibration of the ICON-FUV instrument: development of a vacuum UV facility. Proc. SPIE 9905, 99052W (2016c)
J.J. Makela, M.C. Kelley, A. González Sixto, N. Aponte, R.P. McCoy, Ionospheric topography maps using multiple-wavelength all-sky images. J. Geophys. Res. 106, 29161–29174 (2001). doi:10.1029/2000JA000449
L. Mandel, Image fluctuations in cascade intensifiers. Br. J. Appl. Phys. 10, 233–234 (1959)
R.R. Meier, D.E. Anderson, Determination of atmospheric composition and temperature from the UV airglow. Planet. Space Sci. 31, 967–976 (1983). doi:10.1016/0032-0633(83)90088-0
R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99, 6307–6320 (1994). doi:10.1029/93JA02775
R.R. Meier et al., Remote sensing of Earth’s limb by TIMED/GUVI: retrieval of thermospheric composition and temperature. Earth Space Sci. 2, 1–37 (2015). doi:10.1002/2014EA000035
S.B. Mende, Observing the magnetosphere through global auroral imaging, 2. observing techniques. J. Geophys. Res. Space Phys. 121, 10,638–10,660 (2016). doi:10.1002/2016JA022607
S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J. Spann, S.A. Fuselier, J.-C. Gerard, R. Gladstone, S. Murphree, L. Cogger, Far ultraviolet imaging from the IMAGE spacecraft, 1: system design. Space Sci. Rev. 91, 243–270 (2000a)
S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, A.S. Tremsin, J. Spann, H. Dougani, S.A. Fuselier, A.L. Magoncelli, M.B. Bumala, S. Murphree, T. Trondsen, Far ultraviolet imaging from the IMAGE spacecraft, 2: wideband FUV imaging. Space Sci. Rev. 91, 271–285 (2000b)
S.B. Mende, H. Heetderks, H.U. Frey, J.M. Stock, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gerard, R. Sigler, H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft, 3: spectral imaging of Lyman − α and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000c)
J.S. Murphree, R.A. King, T. Payne, K. Smith, D. Reid, J. Adema, B. Gordon, R. Wlochowicz, The Freja ultraviolet imager. Space Sci. Rev. 70, 421–446 (1994)
J. Qin, F. Kamalabadi, J.J. Makela, Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6 nm emission. J. Geophys. Res. Space Phys. 121, 5805–5814 (2016). doi:10.1002/2016JA022720
M.A. Quijada, S. Rice, E. Mentzell, Enhanced MgF2 and LiF over-coated al mirrors for FUV space astronomy, in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II. Proc. SPIE, vol. 8450 (2012), p. article 84502H, pp10. doi:10.1117/12.925579
E. Sagawa, T. Maruyama, T.J. Immel, H.U. Frey, S.B. Mende, Global view of the nighttime low-latitude ionosphere by the IMAGE/FUV 135.6 nm observations. Geophys. Res. Lett. 30(10), 1534 (2003). doi:10.1029/2003GL017140
A.W. Stephan, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Daytime O/N2 retrieval algorithm for the ionospheric connection explorer (ICON) (2017)
D.J. Strickland, J.S. Evans, L.J. Paxton, Satellite remote sensing of thermospheric O/N2 and solar EUV, 1: theory. J. Geophys. Res. 100, 12217–12226 (1995). doi:10.1029/95JA00574
M.R. Torr, D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, C. Keffer, G. Parks, B. Tsuratani, J. Spann, A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci. Rev. 71, 329 (1995)
C.W. Wilkins, S.B. Mende, H.U. Frey, S.L. England, Time-delay integration imaging with ICON’s far-ultraviolet spectrograph. Space Sci. Rev. (2017)