Article (Scientific journals)
Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.
Davidson, Shaun; Pretty, Chris; Pironet, Antoine et al.
2017In PLoS ONE, 12 (4), p. 1-11
Peer Reviewed verified by ORBi
 

Files


Full Text
journal.pone.0176302(1).pdf
Publisher postprint (3.41 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] This paper develops a means of more easily and less invasively estimating ventricular dead space volume (Vd), an important, but difficult to measure physiological parameter. Vd represents a subject and condition dependent portion of measured ventricular volume that is not actively participating in ventricular function. It is employed in models based on the time varying elastance concept, which see widespread use in haemodynamic studies, and may have direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling curve (stroke volume vs end-diastolic volume) and its end-systolic equivalent (stroke volume vs end-systolic volume), developed across normal clinical procedures such as recruitment manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0) to determine Vd. To demonstrate the broad applicability of the method, it was validated across a cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of cardiac states from healthy baseline behaviour to circulatory failure due to septic shock induced by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear correlation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion respectively, as well as good agreement between the two linearly extrapolated y-intercepts (Vd) for each subject (no more than 7.8% variation). Method validity was further supported by the physiologically reasonable Vd values produced, equivalent to 44.3-53.1% and 49.3-82.6% of baseline end-systolic volume before and after endotoxin infusion respectively. This method has the potential to allow Vd to be estimated without a particularly demanding, specialised protocol in an experimental environment. Further, due to the common use of both mechanical ventilation and recruitment manoeuvres in intensive care, this method, subject to the availability of multi-beat echocardiography, has the potential to allow for estimation of Vd in a clinical environment.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Davidson, Shaun
Pretty, Chris
Pironet, Antoine
Desaive, Thomas  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
JANSSEN, Nathalie ;  Centre Hospitalier Universitaire de Liège - CHU > Service des urgences
LAMBERMONT, Bernard  ;  Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine - Pool assistants
MORIMONT, Philippe ;  Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine - Pool assistants
Chase, J. Geoffrey
Language :
English
Title :
Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.
Publication date :
April 2017
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Volume :
12
Issue :
4
Pages :
1-11
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 August 2017

Statistics


Number of views
94 (15 by ULiège)
Number of downloads
99 (8 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
1
OpenCitations
 
7
OpenAlex citations
 
8

Bibliography


Similar publications



Contact ORBi