
RESEARCH ARTICLE

Minimally invasive estimation of ventricular

dead space volume through use of Frank-

Starling curves

Shaun Davidson1*, Chris Pretty1, Antoine Pironet2, Thomas Desaive2, Nathalie Janssen3,

Bernard Lambermont3, Philippe Morimont3, J. Geoffrey Chase1

1 Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 2 GIGA-

Cardiovascular Sciences, University of Liège, Liège, Belgium, 3 Centre Hospitalier Universitaire de Liège,

Liège, Belgium

* shaun.davidson@pg.canterbury.ac.nz

Abstract

This paper develops a means of more easily and less invasively estimating ventricular dead

space volume (Vd), an important, but difficult to measure physiological parameter. Vd repre-

sents a subject and condition dependent portion of measured ventricular volume that is not

actively participating in ventricular function. It is employed in models based on the time vary-

ing elastance concept, which see widespread use in haemodynamic studies, and may have

direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling

curve (stroke volume vs end-diastolic volume) and its end-systolic equivalent (stroke volume

vs end-systolic volume), developed across normal clinical procedures such as recruitment

manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0) to deter-

mine Vd. To demonstrate the broad applicability of the method, it was validated across a

cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of car-

diac states from healthy baseline behaviour to circulatory failure due to septic shock induced

by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear cor-

relation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion

respectively, as well as good agreement between the two linearly extrapolated y-intercepts

(Vd) for each subject (no more than 7.8% variation). Method validity was further supported

by the physiologically reasonable Vd values produced, equivalent to 44.3–53.1% and 49.3–

82.6% of baseline end-systolic volume before and after endotoxin infusion respectively.

This method has the potential to allow Vd to be estimated without a particularly demanding,

specialised protocol in an experimental environment. Further, due to the common use of

both mechanical ventilation and recruitment manoeuvres in intensive care, this method,

subject to the availability of multi-beat echocardiography, has the potential to allow for esti-

mation of Vd in a clinical environment.
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1. Introduction

Ventricular dead space volume (Vd) and the related ventricular volume at zero pressure (V0)

are important subject-specific parameters for normalising inter- and intra- subject variation

in cardiovascular models, including the widely used end-systolic pressure-volume relation

(ESPVR) and time varying elastance (TVE) models [1–6]. Vd was originally conceptualised as

an ‘experimentally determined correction factor’ for the TVE model [2] with a pair of similar

physiological definitions being established. Vd has been said to ‘represent a functionally dead
volume at which the ventricle cannot generate any supra-atmospheric pressure’ [1, 2], a defini-

tion generally denoted V0 (referred to as V0 henceforth). Vd has also been defined as the vol-

ume at which ‘the ventricle cannot develop any systolic pressure’, which occurs at ‘a volume
coordinate only mildly less than V0 [1, 7]’ (referred to as Vd henceforth). These definitions are

illustrated in Fig 1.

In cardiac models based on the TVE concept, which are widely used in haemodynamic

studies [1–6], Vd and V0 are used to account for variations in heart size, shape and efficiency

between individuals and as an individual’s condition changes. Specifically, Vd and V0 represent

a subject and condition dependent portion of measured ventricular volume that is not actively

participating in ventricular function. As such, being able to estimate and account for Vd and

V0 on a subject and condition specific basis improves the physiological accuracy and the ability

to accurate compare results from these models, where such models offer significant potential

clinical benefits [4, 5, 8, 9]. Hence, this work presents new approaches to estimating these

Fig 1. The ESPVR, V0 and Vd. Definitions as in [1].

https://doi.org/10.1371/journal.pone.0176302.g001
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values to better enable the use of TVE and associated models clinically and thus enhance their

clinical impact. In addition, the physical definitions of Vd and V0, and their sensitivity to con-

tractile state, suggests a potential direct use for these terms as a diagnostic aid [6, 10]. For

example, one would expect an increase in Vd to suggest a heart behaving less ‘efficiently’ as a

pump, and, for obvious reasons, a connection between these terms and the left ventricular

ejection fraction (LVEF) [11].

However, Vd cannot be directly measured without difficult experimental protocols due to the

necessity of reducing the ventricle to atmospheric or sub-atmospheric pressure. Initial experi-

ments validating the TVE model involved cross-circulated canine hearts [2, 3], a procedure

which elegantly separates cardiac behaviour from systemic influences and allows reduction of

the living heart to atmospheric pressure, but is clearly not applicable to an intensive care unit

(ICU) patient. A less invasive alternative is the approximation of V0 (which has a similar value to

Vd) via the ESPVR [10, 12]. However, this procedure typically relies on occlusion of the vena

cava, a specialised intervention that places a significant added burden on both medical staff and

patients, and thus is largely constrained to experimental studies. Further, the short time interval

necessitated by such a procedure means that transient, rather than steady state, behaviour is cap-

tured unless cardiac reflexes are suppressed, obfuscating the true ESPVR curve [13, 14]. As such,

there is no easy, practical means to assess Vd or V0 in the ICU, where it might add clinical value.

This paper presents a novel method for deriving Vd as physiologically defined in [7]: the

volume at which ‘the ventricle cannot develop any systolic pressure’. It relies upon the extra-

polation of a Frank-Starling curve (SV-Ved) and its end-systolic equivalent (SV-Ves) to the

point where stroke volume (SV) is 0, and ‘the ventricle cannot develop any systolic pressure’.

The method utilises common ICU procedures, such as mechanical ventilation recruitment

manoeuvres, to develop this curve, and does not require specialised clinical intervention. The

method is demonstrated across both a healthy, baseline case as well as a compromised state

after an endotoxin infusion to demonstrate the method’s applicability to both healthy and

compromised cardiovascular systems.

The method as presented here employs an invasive left ventricular catheter to measure end-

diastolic (Ved) and end-systolic (Ves) volume. Such volume measurements are increasingly

available non-invasively via methods such as echocardiography [15], though it is important to

note that the number of Ved and Ves measurements required are demanding by the standards

of modern echocardiography. While further validation and a modified protocol would be

required, this method has the long-term potential to allow non-additionally invasive, patient-

specific evaluation of Vd in a clinical environment, and thus an assessment of its clinical value

beyond use in physiological models.

2. Materials and methods

2.1 Ethical approval

All experimental procedures and protocols used in this investigation were reviewed and

approved by the Institutional Animal Care and Use Ethics Committee of the University of

Liège, Belgium (Reference Number 14–1726). Their guidelines conform completely with the

Guide for the Care and Use of Laboratory Animals published by the US National Institutes of

Health (NIH Publication No. 85–23, revised 1996), as well as EUDIRECTIVE 2010/63/EUon

the protection of animals used for scientific purposes.

2.2 Experimental procedure

Five male, pure Pietrain pigs weighing between 18.5 and 29 kg were sedated and anesthetised

by an initial intramuscular dose of Zoletil 100 (0.1 mL/kg) and Ketamine 1000 (0.1 mL/kg).
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Sedation and anaesthesia was maintained by a continuous infusion of Nimbex (1 mL/kg/h at 2

mg/mL), Sufenta (0.1 mL/kg/h at 0.005 mg/mL) and Thiobarbital (0.1 mL/kg/h) via a central

venous catheter positioned within the superior vena cava. The pigs were mechanically venti-

lated (GE Engstrom CareStation) with a baseline positive end-expiratory pressure (PEEP) of 5

cmH2O and tidal volume of 270 mL. The heart was accessed via a median sternotomy, and an

admittance pressure-volume catheter (Transonic, NY, USA) with a sampling rate of 250 Hz

inserted into the left ventricle. Proximal aortic pressure was continually sampled using a pres-

sure catheter (Transonic, NY, USA) with a sampling rate of 250 Hz. Euthanasia was performed

via a bolus of Pentobarbital (30 mg/kg) and Sufentanil (5 μg/kg) causing respiratory arrest.

To ensure a diverse range of cardiac states was exhibited, several procedures were

performed:

• A single infusion of endotoxin (lipopolysaccharide from E. Coli, 0.5 mg/kg injected over 30

minutes) to induce septic shock, which drives a change in afterload conditions and is associ-

ated with a large variety of effects including an inflammatory response and capillary leakage

that may lead to hypovolemia, global tissue hypoxia and cardiac failure [16].

• Several PEEP driven recruitment manoeuvres (both pre- and post- endotoxin infusion),

which drive a change in preload conditions and are typically associated with a decrease in

mean blood pressure and cardiac output [17].

• One to four infusions of 500 mL saline solution over 30 minute periods (both pre- and post-

endotoxin infusion), simulating fluid resuscitation therapy, a key component of hemody-

namic resuscitation in patients with severe sepsis, which results in a change in circulatory

volume [18].

2.3 Estimation of Vd

This method uses the definition of Vd as the volume at which ‘the ventricle cannot develop any

systolic pressure’ [1, 7]. Left ventricular end-systolic (Ves), end-diastolic (Ved) and stroke (SV)

volumes for each heartbeat were established from catheter data. This data was used to generate

a Frank-Starling curve (SV-Ved) and its end-systolic equivalent (SV-Ves) for each subject. Sepa-

rate linear regression of the SV-Ves and SV-Ved curves was performed using a total least squares

algorithm [19]. Independent extrapolation of each curve to the y-axis should result in both con-

verging to a single point at which SV = 0. At this point, no systolic pressure is developed over

the course of a heartbeat, as Ved = Ves, and Vd is the value of the ventricular volume y-intercept.

2.4 Evaluation of method

Ventricular Dead Space Volume (Vd) is extremely difficult to physically measure, and some

ambiguity as to the exact definition of this value exists [1]. These difficulties make validation

via a measured ‘ground truth’ Vd value impractical. As such, validation of the method used to

derive Vd must rely on validating individual model assumptions and the physiological reason-

ability of the results. This process encompasses:

• Evaluation of the agreement between the separate Vd values derived from the SV-Ves and

SV-Ved curves for each pig. Theoretically, the two curves should intersect at an identical Vd

value if the linear approximation of the Frank-Starling curve holds.

• Assessment of the validity and strength of linear regression via Pearson’s correlation coeffi-

cients (presented as R values) to ensure a linear, physiological relationship, rather than

chance, creates the observed lines.
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• Evaluation of the reasonability of the derived Vd values, both in terms of physiology and

compared to values presented in literature.

The analysis of data for each pig was separated into pre- and post- endotoxin infusion, as

the development of sepsis should modify contractility and result in an increase in Vd. This

hypothesis was evaluated using a one-tailed paired Wilcoxon Signed-Rank Test [20]. This

non-parametric statistical test does not rely on data being normally distributed. A single value

for Vd pre- and post- endotoxin infusion was provided from each of 6 pigs (n = 6). Overall, the

method was employed across a total of 59,513 heartbeats worth of data, and 6 different animals

in multiple circulatory states.

Once severe sepsis developed, the Frank-Starling curve generally collapsed to the extent non-

linear behaviour was present in the observable data range. Data gathered during this period of

severe sepsis, the onset of which was defined as a drop in LVEF of greater than 33% for greater

than 60 seconds [21], is excluded, as linear behaviour is a poor approximation to make at this

point. This observable non-linear behaviour is illustrated by the Frank-Starling curves (approxi-

mated by hand) and the ‘circulatory collapse’ region in Fig 2, overlaid with data from Pig 3.

3. Results

Table 1 shows the absolute and relative values of Vd derived from the end-systolic (Vd(Ves))

and end-diastolic (Vd(Ved)) curves, as well as the variation between these values. Vd values for

Fig 2. Example Frank-Starling curves with data from Pig 3 overlaid. 6841 heartbeats, illustrative trend

lines drawn by hand.

https://doi.org/10.1371/journal.pone.0176302.g002
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each subject are specified separately for the pre- and post-endotoxin infusion periods. Due to

the relatively small number of subjects, it is possible the data set is not normally distributed

and thus overall values are presented as median (25th percentile–75th percentile).

The method presented relies on the assumption that stroke volume is linearly correlated to

Ves and Ved, and that linear extrapolation of this relationship is valid. These assumptions are

supported by the strong agreement between the two separately established values of Vd, with

an overall median absolute difference ΔVd of 2.5% pre- endotoxin infusion and 1.1% post-

endotoxin infusion, for each pig. The values of Vd are also physiologically reasonable and con-

sistent at 44.3–53.1% of baseline Ves pre- endotoxin infusion [10] and 49.3–82.6% of baseline

Ves post- endotoxin infusion for all pigs. Further, the overall values for Vd rose significantly

(p = 0.0156, one-tailed paired Wilcoxon Signed-Rank Test [20]) as sepsis developed, thus

showing the impact of sepsis in reducing cardiac function using this measure. However, the

small sample size (n = 6) should be noted.

Fig 3 shows the SV-Ves and SV-Ved curves used to derive Vd, and the corresponding regres-

sion lines and correlation coefficients for each pig, pre- and post- endotoxin infusion. The

stroke and absolute volumes for each pig occupy a reasonably diverse range both inter- and

intra- subject. The correlation coefficients, R = 0.78 and R = 0.80 average for pre- and post-

endotoxin infusion respectively, are consistently high, again supporting the validity of a linear

model over these periods and interventions. The lower correlation coefficients for SV-Ves are

primarily due to the lower gradients present in this curve, which is close to horizontal for sev-

eral pigs, as observed in this work and others [22].

4. Discussion

4.1 Validation of method

One of the core assumptions made in determining Vd is that stroke volume (SV) is a linear func-

tion of both end-systolic (Ves) and end-diastolic (Ved) ventricular volumes. This assumption is

Table 1. Vd and its variability, as determined by linear regression.

Pig Vd(Ves)a, mL Vd(Ved)a, mL ΔVd, mL ΔVd, %Vd(Ves) Ves(Bas)b, mL Vd(Ves), %Ves(Bas) Vd(Ved), %Ves(Bas)

Pig 1 Nc 26.8 27.5 0.7 2.7% 60.6 44.3% 45.5%

Sc 33.6 34.0 0.4 1.2% 55.5% 56.2%

Pig 2 N 31.9 31.2 0.7 2.2% 71.2 44.7% 43.8%

S 35.1 35.4 0.3 0.9% 49.3% 50.0%

Pig 3 N 22.8 22.8 0.1 0.4% 49.3 46.2% 46.4%

S 40.7 40.2 0.5 1.2% 82.6% 81.5%

Pig 4 N 29.8 32.1 2.3 7.8% 61.6 48.3% 52.0%

S 43.2 43.8 0.6 1.4% 70.1% 71.0%

Pig 5 N 26.2 26.8 0.6 2.3% 52.6 49.8% 50.9%

S 41.8 42.0 0.2 0.4% 79.4% 79.7%

Pig 6 N 27.1 26.0 1.1 4.1% 51.1 53.1% 50.9%

S 32.3 32.2 0.1 0.4% 63.2% 62.9%

Overall d N 27.0

(26.2–29.8)

27.2

(26.0–31.2)

0.7

(0.6–1.1)

2.5%

(2.2–4.1)

57.7 47.3%

(44.7–49.8)

48.7%

(45.5–50.9)

S 37.9

(33.6–41.8)

37.8

(34.0–42.0)

0.4

(0.2–0.5)

1.1%

(0.4–1.2)

66.7%

(55.5–79.4)

67.0%

(56.2–79.7)

a Vd(Ves) and Vd(Ved) denote Vd values derived from the SV-Ves and SV-Ved curves respectively.
b Ves(Bas) denotes the baseline end-systolic volume, averaged over the first 10 heartbeats of the experiment.
c N denotes data from the pre-infusion (normal) region while S denotes data from the post-infusion (developing sepsis) region.
d Overall values are presented as median (25th percentile–75th percentile).

https://doi.org/10.1371/journal.pone.0176302.t001
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Fig 3. Pre- (left) and post- (right) endotoxin infusion SV-Ved, SV-Ves curves and regression lines for each pig. Number of

heartbeats and Pearson’s Correlation Coefficients (R) presented in figure.

https://doi.org/10.1371/journal.pone.0176302.g003
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somewhat physiologically intuitive, as both Ves and Ved are intrinsically related and largely reli-

ant on the same underlying factors, and such behaviour has been observed elsewhere [23].

However, one would expect some degree of independent variation, especially as sepsis and thus

circulatory distress progresses. Fig 3 shows consistently strong linear relationships for SV-Ves

(R = 0.69 average) and SV- Ved (R = 0.89 average) for all 6 pigs undergoing a full progression

from healthy to cardiac failure due to sepsis. This result implies that, while some independent

variation in Ves and Ved certainly occurs, the variables largely maintain a linear relationship

even when the cardiac system is under considerable stress.

Another core assumption is that the relationship between SV, Ves and Ved is not just linear

in the observed range, but can be linearly extrapolated to SV = 0. Table 1 and Fig 3 both show

that independent linear extrapolation of the SV-Ves and SV-Ved lines for each pig yields

extremely consistent values for Vd with 7.8% variation at most, and an overall median absolute

difference in paired Vd estimates of 2.1%. This low degree of variation across 6 separate sub-

jects exhibiting a range of cardiac behaviour across a diverse and demanding clinical protocol

provides strong support for this assumption. Further, the Frank-Starling Curve (SV-Ved) is

known to behave linearly in this region [24], and linear behaviour of the SV-Ves curve may

thus also be reasonably intuited.

Further supporting evidence of the validity of linear extrapolation is provided in the fact

that the method yields extremely consistent, positive, values for Vd relative to Ves. These Vd val-

ues are 44.3–53.1% of the baseline Ves pre-infusion, and 49.3–82.6% of the baseline Ves post-

infusion. This consistency supports the idea that Vd varies between subjects in a manner some-

what proportional to ventricular volume for a given set cardiac conditions. The fact that this

percentage range of baseline Ves is reasonably small for healthy behaviour provides the possi-

bility to estimate baseline Vd from baseline Ves, though this range of values may be different for

humans compared to pigs.

The derived values for Vd also agree with measured values provided in the literature.

Although these typically use the Vd = V0 definition for ventricular dead space, the two values

have been shown to be similar [1, 7]. For example [10] presents several V0 values for cross cir-

culated dogs, and protocols involving preload, afterload and inotropic variation. The baseline

preload experiment gives a range of 13–52% and the baseline afterload experiment a range of

46–83% of Ves for V0, overlapping with the 44.3–53.1% of Ves range for Vd observed in this

paper. Observations in [6], a study conducted on humans, yield V0 values for a normal con-

tractile state in a 24–84% of Ves range for V0 (ignoring negative results) across 5 subjects, again

encompassing the 44.3–53.1% of Ves range for Vd observed in this paper. Further, [6] also

observed an increase in V0 values from a baseline average value of 32 cc/m2 to an average value

of 46 cc/m2 for individuals with intermediate and 100 cc/m2 for individuals with poor contrac-

tile function, which agrees with the statistically significant increase in Vd observed in this

paper as sepsis developed. Other values presented in literature are similarly sized, positive val-

ues, as might be expected [12, 25]. Overall, this further data provides a strong body of evidence

for the physiological validity of the results and thus the proposed methodology.

4.2 Response to sepsis

In the period between endotoxin infusion and cardiac failure, Vd values rose in all cases from a

range of 44.3–53.1% to 49.3–82.6%. This statistically significant increase in dead space volume

corresponds to the decreased LVEF observed in sepsis patients, and the myocardial depression

associated with failure to survive sepsis [26]. This behaviour agrees well with the physiological

definition of Vd, and supports its potential clinical use as a diagnostic aid. Importantly, in this

region, the agreement between the two Vd values remained strong, and correlation coefficients
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remained high, suggesting the Frank-Starling curve remained in its linear region despite sig-

nificant change in cardiac function.

Directly prior to death, the Frank-Starling curve generally underwent a dramatic shift to

the left and nonlinear behaviour was observable and strong (example in Fig 2). This corre-

sponds to the expected behaviour of the Frank-Starling curve as complete cardiac failure

occurs [27]. This data, characterised by a decrease in LVEF of greater than 33% for longer than

60 seconds, was excluded from the ‘post-endotoxin infusion’ data as linear behaviour is a poor

approximation to make at this point.

4.3 Limitations

There are some limitations to this study worth discussing. First, the study employs a left ven-

tricular catheter to measure Ved and Ves, the insertion of which is an invasive procedure that is

not common practice in the ICU. Such volume measurements are increasingly available non-

invasively via methods such as echocardiography [15], but the number of measurements

required for this method is demanding by current echocardiography standards. Further, vol-

ume measurement, in addition to specialised invasive protocols, is also required for approxi-

mation of V0 via the ESPVR [13, 14], which is the standard method available for finding a

value similar to Vd. In contrast, the method presented here requires only common ICU inter-

ventions, primarily recruitment manoeuvres, to obtain a large enough range of data to fit a

line. These interventions occur in normal care and are thus less burdensome to obtain. They

also occur over a longer timescale meaning cardiac reflexes distort results less significantly

compared to other methods.

Additionally, all data presented here is the result of the same protocol involving sepsis, a

complex and varied condition [16], and several standardised interventions. While this data set

encompasses several pigs and the full progression from healthy, baseline behaviour to cardiac

failure, there are a huge range of possible cardiac conditions that could be tested. Thus further

validation over several of these conditions would be beneficial. Regardless, the underlying

physiology and data supporting the development of this method has been discussed in detail,

and would be expected to transfer to the majority of such conditions.

4.4 Summary

Overall, Vd is an important, subject specific, physiological value that is difficult to measure

or accurately approximate, even when invasive instrumentation is available [1]. Thus, this

method offers significant potential in its ability to provide a relatively easy, non-additionally

invasive means of estimating Vd when ventricular volume measurements are available, without

requiring a specific and highly involved protocol. Though any clinical application will require

further studies and a modified protocol, this method offers the potential to aid in assessment

of patient condition through its ability to normalise intra- and inter- patient variability.

5. Conclusion

Ventricular dead space volume (Vd) is an important, subject specific value for normalisation of

inter- and intra-subject variation. However, its definition is ambiguous and it is difficult to

directly measure or approximate in a clinical environment. A method is presented involving

linear extrapolation of a Frank-Starling curve and its end-systolic equivalent, which allows

subject specific estimation of Vd, while only requiring typical ICU procedures. The method

yielded good agreement in Vd values (7.8% variation at most), is based on strong linear correla-

tions (R = 0.79 average) and produced physiologically reasonable values for Vd (44.3–53.1%

and 49.3–82.6% of baseline Ves before and after endotoxin infusion respectively). Overall, this

Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves

PLOS ONE | https://doi.org/10.1371/journal.pone.0176302 April 27, 2017 9 / 11

https://doi.org/10.1371/journal.pone.0176302


method has the potential in the longer term to allow estimation of Vd and thus an increased

ability to normalise inter-subject variation in a clinical environment.
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