N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase
Navarre, Catherine ✱; Université Catholique de Louvain - UCL > Institut des Sciences de la Vie
Smargiasso, Nicolas ✱; Université de Liège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Duvivier, Laurent; Université Catholique de Louvain - UCL > Institut des Sciences de la Vie
Nader, Joseph; Université Catholique de Louvain - UCL > Institut des Sciences de la Vie
Far, Johann ; Université de Liège > Département de chimie (sciences) > Center for Analytical Research and Technology (CART)
De Pauw, Edwin ; Université de Liège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Boutry, Marc; Université Catholique de Louvain - UCL > Institut des Sciences de la Vie
✱ These authors have contributed equally to this work.
Language :
English
Title :
N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase
Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98(5):2899–2904. doi:10.1073/pnas.031419998
Bakker H, Rouwendal GJA, Karnoup AS, Florack DEA, Stoopen GM, Helsper JPFG, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid β-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci 103(20):7577–7582. doi:10.1073/pnas.0600879103
Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19(31):5503–5512. doi:10.2174/1381612811319310006
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3
Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309. doi:10.1105/tpc.001586
Fujiyama K, Misaki R, Katsura A, Tanaka T, Furukawa A, Omasa T, Seki T (2006) N-linked glycan structures of a mouse monoclonal antibody produced from tobacco BY2 suspension-cultured cells. J Biosci Bioeng 101(3):212–218. doi:10.1263/jbb.101.212
Fujiyama K, Furukawa A, Katsura A, Misaki R, Omasa T, Seki T (2007) Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human β(1,4)-galactosyltransferase. Biochem Biophys Res Commun 358(1):85–91. doi:10.1016/j.bbrc.2007.04.054
Goderis IJWM, De Bolle MFC, Francois IEJA, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50(1):17–27
Hesselink T, Rouwendal GJA, Henquet MGL, Florack DEA, Helsper JPFG, Bosch D (2014) Expression of natural human β1,4-GalT1 variants and of non-mammalian homologues in plants leads to differences in galactosylation of N-glycans. Transgenic Res 23(5):717–728. doi:10.1007/s11248-014-9806-z
Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289. doi:10.1002/bit.22800
Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9(7):774–800. doi:10.2174/156652409789105552
Kajiura H, Misaki R, Fujiyama K, Seki T (2011) Stable coexpression of two human sialylation enzymes in plant suspension-cultured tobacco cells. J Biosci Bioeng 111(4):471–477. doi:10.1016/j.jbiosc.2010.11.018
Kallolimath S, Steinkellner H, Hiatt A (2015) Glycosylation of plant produced human antibodies. Hum Antibodies 23(3–4):45–48. doi:10.3233/HAB-150283
Kang SH, Jung HS, Lee SJ, Park CI, Lim SM, Park H, Kim BS, Na KH, Han GJ, Bae JW, Park HJ, Bang KC, Park BT, Hwang HS, Jung IS, Kim JI, Oh DB, Kim DI, Yagi H, Kato K, Kim DK, Kim HH (2015) Glycan structure and serum half-life of recombinant CTLA4Ig, an immunosuppressive agent, expressed in suspension-cultured rice cells with coexpression of human β1,4-galactosyltransferase and human CTLA4Ig. Glycoconj J 32(3–4):161–172. doi:10.1007/s10719-015-9590-x
Karg SR, Frey AD, Kallio PT (2010) Reduction of N-linked xylose and fucose by expression of rat β1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J Biotechnol 146(1–2):54–65. doi:10.1016/j.jbiotec.2010.01.005
Loos A, Steinkellner H (2012) IgG-Fc glycoengineering in non-mammalian expression hosts. Arch Biochem Biophys 526(2):167–173. doi:10.1016/j.abb.2012.05.011
Magy B, Tollet J, Laterre R, Boutry M, Navarre C (2014) Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions. Plant Biotechnol J 12(4):457–467. doi:10.1111/pbi.12152
Mercx S, Tollet J, Magy B, Navarre C, Boutry M (2016) Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci. doi:10.3389/fpls.2016.00040
Misaki R, Kimura Y, Fujiyama K, Seki T (2001) Glycoproteins secreted from suspension-cultured tobacco BY2 cells have distinct glycan structures from intracellular glycoproteins. Biosci Biotechnol Biochem 65(11):2482–2488. doi:10.1271/bbb.65.2482
Misaki R, Kimura Y, Palacpac NQ, Yoshida S, Fujiyama K, Seki T (2003) Plant cultured cells expressing human β1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13(3):199–205. doi:10.1093/glycob/cwg021
Misaki R, Fujiyama K, Seki T (2006) Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochem Biophys Res Commun 339(4):1184–1189. doi:10.1016/j.bbrc.2005.11.130
Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273(52):34837–34842. doi:10.1074/jbc.273.52.34837
Navarre C, Delannoy M, Lefebvre B, Nader J, Vanham D, Boutry M (2006) Expression and secretion of recombinant outer-surface protein A from the lyme disease agent, Borrelia burgdorferi, in Nicotiana tabacum suspension cells. Transgenic Res 15(3):325–335
Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human β1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA 96(8):4692–4697. doi:10.1073/pnas.96.8.4692
Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-l orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112(2):308–321. doi:10.1002/bit.25352
Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334. doi:10.1093/glycob/cwv065
Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29(5):661–678. doi:10.1046/j.0960-7412.2002.01252.x
Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci. doi:10.3389/fpls.2016.00297
Schneider J, Castilho A, Pabst M, Altmann F, Gruber C, Strasser R, Gattinger P, Seifert GJ, Steinkellner H (2015) Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Plant Physiol Biochem 92:39–47. doi:10.1016/j.plaphy.2015.04.010
Schoberer J, Strasser R (2011) Sub-compartmental organization of golgi-resident N-glycan processing enzymes in plants. Mol Plant 4(2):220–228. doi:10.1093/mp/ssq082
Schoberer J, Liebminger E, Botchway SW, Strasser R, Hawes C (2013) Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the golgi stack in planta. Plant Physiol 161(4):1737–1754. doi:10.1104/pp.112.210757
Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R (2014) The transmembrane domain of N-acetylglucosaminyltransferase i is the key determinant for its Golgi subcompartmentation. Plant J 80(5):809–822. doi:10.1111/tpj.12671
Strasser R (2016) Plant protein glycosylation. Glycobiology. doi:10.1093/glycob/cww023
Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J Biol Chem 284(31):20479–20485. doi:10.1074/jbc.M109.014126
Strasser R, Altmann F, Steinkellner H (2014) Controlled glycosylation of plant-produced recombinant proteins. Curr Opin Biotechnol 30:95–100. doi:10.1016/j.copbio.2014.06.008
van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases agrobacterium-mediated plant transformation. Plant Mol Biol 43(4):495–502
Vézina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7(5):442–455. doi:10.1111/j.1467-7652.2009.00414.x
Yin B, Gao T, Zheng N, Li Y, Tang S, Liang L, Xie Q (2011) Generation of glyco-engineered BY2 cell lines with decreased expression of plant-specific glycoepitopes. Protein Cell 2(1):41–47. doi:10.1007/s13238-011-1007-4