Carrau, F., Gaggero, C., Aguilar, P. S. Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol. 33, 148-154 (2015).
Carrau, F., Medina, K., Farinã, L., Boido, E., Dellacassa, E. Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content. Int. J. Food Microbiol. 143, 81-85 (2010).
Navarro, S., Vela, N., Navarro, G. Fate of triazole fungicide residues during malting, mashing and boiling stages of beer making. Food Chem. 124, 278-284 (2011).
Kong, Z. et al. Processing factors of triadimefon and triadimenol in barley brewing based on response surface methodology. Food Control 64, 81-86 (2016).
Koller, W. Sterol demethylation inhibitors: Mechanism of action and resistance, in: Delp, C. J., (Ed.), Fungicide Resistance in North America. APS Press, St. Paul, pp. 79-88 (1988).
Navarro, S., Perez-Lucas, G., Vela, N., Navarro, G. Behavior of triazole fungicide residues from barley to beer. In: Preedy, V. R. (Ed.), Processing and impact on active components in food. Elsevier Inc., San Diego, CA, pp. 525-532 (2015).
Kong, Z. et al. Behavior of field-applied triadimefon, malathion, dichlorvos, and their main metabolites during barley storage and beer processing. Food Chem. 211, 679-686 (2016).
Miyake, Y., Tajima, R. Fate of pesticide metabolites on malt during brewing. J. Am. Soc. Brew. Chem. 61, 33-36 (2003).
Regueiro, J., Lopez-Fernandez, O., Rial-Otero, R., Cancho-Grande, B., Simal-Gandara, J. A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality. Crit. Rev. Food Sci. Nutr. 55, 839-863 (2015).
Wolf-Hall, C. E. Mold and mycotoxin problems encountered during malting and brewing. Int. J. Food Microbiol. 119, 89-94 (2007).
Langos, D., Granvogl, M., Schieberle, P. Characterization of the key aroma compounds in two bavarian wheat beers by means of the sensomics approach. J. Agric. Food Chem. 61, 11303-11311 (2013).
Stribny, J., Gamero, A., Pérez-Torrado, R., Querol, A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int. J. Food Microbiol. 205, 41-46 (2015).
Navarro, S., Vela, N., Perez, G., Navarro, G. Effect of sterol biosynthesis-inhibiting (SBI) fungicides on the fermentation rate and quality of young ale beer. Food Chem. 126, 623-629 (2011).
Garcia, M. A., Oliva, J., Barba, A., Camara, M. A., Pardo, F., Diaz-Plaza, E. M. Effect of fungicide residues on the aromatic composition of white wine inoculated with three Saccharomyces cerevisiae strains. J. Agric. Food Chem. 52, 1241-1247 (2004).
González-Álvarez, M., González-Barreiro, C., Cancho-Grande, B., Simal-Gándara, J. Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines. Food Chem. 131, 826-836 (2012).
Gonzalez-Rodriguez, R. M., Noguerol-Pato, R., Gonzalez-Barreiro, C., Cancho-Grande, B., Simal-Gandara, J. Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Res. Int. 44, 397-403 (2011).
Oliva, J., Zalacain, A., Paya, P., Salinas, M. R., Barba, A. Effect of the use of recent commercial fungicides [under good and critical agricultural practices] on the aroma composition of Monastrell red wines. Anal. Chim. Acta 617, 107-118 (2008).
Kondo, E., Marriott, P. J., Parker, R. M., Kouremenos, K. A., Morrison, P., Adams, M. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: Application to biomarker discovery. Anal. Chim. Acta 807, 135-142 (2014).
Bouhifd, M., Hartung, T., Hogberg, H. T., Kleensang, A., Zhao, L. Review: toxicometabolomics. J. Appl. Toxicol. 33, 1365-1383 (2013).
Bochner, B. R. Sleuthing out bacterial identities. Nature 339, 157-158 (1989).
Lu, X., Zhao, X., Bai, C., Zhao, C., Lu, G., Xu, G. LC-MS-based metabonomics analysis. J. Chromatogr. B. 866, 64-76 (2008).
Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005-1018 (2010).
Guo, N., Yang, D., Wang, X., Dai, J., Wang, M., Lei, Y. Metabonomic study of chronic heart failure and effects of Chinese herbal decoction in rats. J. Chromatogr. A. 1362, 89-101 (2014).
Navarro, S., Perez, G., Navarro, G., Mena, L., Vela, N. Influence of fungicide residues on the primary fermentation of young lager beer. J. Agric. Food Chem. 55, 1295-1300 (2007).
Fleet, G. H. Yeast interactions and wine flavor. Int. J. Food Microbiol. 86, 11-22 (2003).
Bi Fai, P., Grant, A. A comparative study of Saccharomyces cerevisiae sensitivity against eight yeast species sensitivities to a range of toxicants. Chemosphere 75, 289-296 (2009).
Braconi, D. et al. Oxidative damage mediated by herbicides on yeast cells. J. Agric. Food Chem. 56, 3836-3845 (2008).
Hui, G. et al. Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose. Food Chem. 170, 484-491 (2015).
Peris, M., Escuder-Gilabert, L. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review. Anal. Chim. Acta 804, 29-36 (2013).
Qiu, S., Wang, J., Gao, L. Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. LWT-Food Sci. Technol. 60, 115-123 (2015).
Rodriguez-Mendez, M. L. et al. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue. Food Chem. 155, 91-97 (2014).
Sadrieh, N. et al. Stability, dose uniformity, and palatability of three counterterrorism drugs-human subject and electronic tongue studies. Pharm. Res. 22, 1747-1756 (2005).
Munroe, J. H. Fermentation. In: Priest, F. G., Stewart, G. G. (Eds), Handbook of brewing, Boca Raton, FL: Taylor and Francis. 2nd ed., pp. 487-524 (2006).
Swiergers, J. H., Pretorius, I. S. Yeast modulation of wine flavour. Adv. Appl. Microbiol. 57, 131-175 (2005).
Debourg, A. Yeast flavour metabolites. European Brewery Convention Monograph 28, 60-73 (2000).
Pisarnitskii, A. F. Formation of wine aroma: tones and imperfections caused by minor components (review). Appl. Biochem. Microbiol. 37, 552-560 (2001).
MacDonall, J., Reeve, P. T. V., Ruddlesden, J. D., White, F. H. Current approaches to brewery fermentations. In: Progress in industrial microbiology. Modern applications of traditional biotechnologies, Bushell, D. E. (Ed.) Elsevier, Amsterdam, pp. 47-198 (1984).
Oliva, J., Navarro, S., Barba, A., Navarro, G., Salinas, M. R. Effect of Pesticide Residues on the Aromatic Composition of Red Wines. J. Agric. Food Chem. 47, 2830-2836 (1999).
Kagan, I. A., Michel, A., Prause, A., Scheffler, B. E., Pace, P., Duke, S. O. Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pestic. Biochem. Physiol. 82, 133-153 (2005).
Verstrepen, K. J. et al. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl. Environ. Microbiol. 69, 5228-5237 (2003).
Bell, S. J., Henschke, P. A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 11, 242-295 (2005).
Sablayrolles, J. M., Ball, C. B. Fermentation kinetics and the production of volatiles during alcoholic fermentation. J. Am. Soc. Brew. Chem. 53, 71-78 (1995).
Gai, B., Ji, B., Zhang, H., Zhou, F., Jiang, H. Study on the utilization of amino acids during the cider making. Food and Fermentation Industries 31, 34-38 (2005) (in Chinese).
Lekkas, C., Stewart, G. G., Hill, A. E., Taidi, B., Hodgson, J. The importance of free amino nitrogen in wort and beer. Tech. Q. Master Brew. Assoc. Am. 42, 113-116 (2005).
Garde-Cerdán, T., Martínez-Gil, A. M., Lorenzo, C., Lara, J. F., Pardo, F., Salinas, M. R. Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chem. 124, 106-116 (2011).
Xia, J., Sinelnikov, I. V., Han, B., Wishart, D. S. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 1, 1-7 (2015).
Emria, T., Pócsia, I., Szentirmaia, A. Glutathione metabolism and protection against Oxidative stress caused by peroxides in Penicillium Chrysogenum. Free Rad. Biol. Med. 23, 809-814 (1997).
Ecker, J., Liebisch, G. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog. Lipid Res. 54, 14-31 (2014).
Liao, W. T. et al. Metabolite modulation in human plasma in the early phase of acclimatization to hypobaric hypoxia. Sci. Rep. 6, 22589 (2016).